
A Uniform System for Publishing and Maintaining XML Data

Byron Choi
University of Pennsylvania

kkchoi@gradient.cis.upenn.edu

Wenfei Fan
�

University of Edinburgh & Bell Laboratories
wenfei@inf.ed.ac.uk

Xibei Jia
University of Edinburgh
x.jia@sms.ed.ac.uk

Arek Kasprzyk
European Bioinformatics Institute

arek@ebi.ac.uk

1 Introduction

XML has become the prime standard for data exchange on
the Web. To exchange data currently residing in databases,
one needs to publish it in XML, i.e., to extract data from
the database and transform the data into an XML format.
In practice, data publishing is often done with a predefined
“schema”. A community agrees on a certain schema, and
subsequently all members of the community exchange their
data w.r.t. the predefined schema, by ensuring their pub-
lished (target) XML data to conform to the fixed schema.
This is called schema-directed XML publishing. The need
for this is particularly evident in biological data exchange
and services. However, it is nontrivial to ensure that the tar-
get XML data conforms to a given schema. The difficulty is
introduced by, among others, recursion in a target schema,
which is common in, e.g., biological ontologies [7].

With XML publishing also comes the increasing need for
maintaining target XML data. The underlying source data
often changes and evolves, and the source updates should
be reflected in its XML target accurately and efficiently. A
naive approach would be to recompute the XML target from
scratch in response to source data changes. This is not very
realistic in many applications where XML publishing in-
volves voluminous data and may take hours to complete.
This suggests that one needs to deal with updates incremen-
tally: propagate the updates from the source data to its XML

target with minimal recomputation. While this is reminis-
cent of traditional database view maintenance, incremental
updates are more challenging for hierarchical and possibly
recursive XML views constrained by a predefined schema.

In response to the need we proposed a new approach
for schema-directed publishing of relational data in XML,

�

Supported in part by NSF Career Award IIS-0093168, NSFC
60228006 and EPSRC GR/S63205/01.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

based on the novel notion of attribute transformation gram-
mars (ATGs [3]). ATGs provide guidance on how to define
views conforming to target schemas (DTDs) and better still,
they automatically ensure schema conformance. We also
developed an incremental algorithm for maintaining XML

views produced by ATGs [4], based on new incremental
computation techniques that capitalize on the hierarchical
structure of XML data and unique features of ATGs.

Recently we have implemented a middleware system
that supports both schema-directed XML publishing based
on ATGs, and incremental updates of XML views created by
ATGs. We have also been deploying and evaluating the sys-
tem at the European Bioinformatics Institute (EBI). Our ex-
perimental results are promising: our system is capable of
efficiently publishing real-life biological data (in the order
of GigaBytes) and guaranteeing the XML views to conform
to predefined (recursive) DTDs; moreover, our incremental
update algorithm outperforms the recomputation approach
by two orders of magnitude. The system will possibly be
adopted by EBI in the near future. To the best of our knowl-
edge, it is the first practical system that supports schema-
directed XML publishing and incremental updates.

Taking real-life data from Gene Ontology [7] (GO), this
paper demonstrates how this system can efficiently pub-
lish the GO data in XML w.r.t. a predefined recursive DTD,
and how it incrementally updates the target XML data in
response to changes to the underlying GO database.
Related work. Although a number of XML publishing
systems have been developed (e.g., [5, 8, 6, 9, 10]), none
of these systems takes schema-conformance into account.
Type-checking approaches to DTD conformance are im-
practical since type checking of transformations, even for
simple DTDs, is computationally intractable for extremely
restricted views and undecidable for realistic views [1].
Worse still, type-checking does not provide any guidance
on how to repair an XML view that does not typecheck.

The notion of ATGs was proposed in [3] and the incre-
mental update algorithm was developed in [4]. However,
the work in this paper is the first effort to fully implement
ATGs and incremental updates, combine them in a uniform
system, and to verify the effectiveness of the techniques
in real-life applications. Furthermore, in our implemen-

Source relational schema
�
:

primary terms(go id, name, updated)
terms(go id, name, updated)
ancestors(parent id, child id)
main(protein id, name, source)
protein2go(protein id, go id)

Target DTD ��� :
<!ELEMENT db (term*)>
<!ELEMENT term (children, id, tname,

updated, proteins)>
<!ELEMENT children (term*)>
<!ELEMENT proteins (protein*)>
<!ELEMENT protein (pname, pid, source)>

/* #PCDATA is omitted here. */

Figure 1: Example of a source schema and a target DTD

tation we developed new optimization ideas that were not
explored by [3, 4]. Another extension of ATG was proposed
in [2] for integration, which is not part of this demo system.

2 Schema-Directed Publishing

The problem of schema-directed publishing can be stated
as follows: given a DTD � , to define a view � for relational
databases � such that ���	��
 is an XML document conforming
to � . We conduct schema-directed publishing by means of
Attribute Transformation Grammars (ATGs [3]).

Given an arbitrary target DTD � , an ATG defines a view
as follows: (1) For each element type � in � , it defines
a variable
�� ; intuitively, each � element in an XML tree
is to have a variable
�� , which contains a single relational
tuple as its value. (2) For each element type definition (pro-
duction) ����� in � , where � is a regular expression, it
specifies a set of semantic rules such that for each element
type � in � , there is a rule for computing the values of

�� via SQL queries; the query is treated as a function that
may take
�� as a parameter. Given a relational database
� , the ATG is evaluated top-down: starting at the root el-
ement type of � , evaluate semantic rules associated with
each element type encountered, and create nodes following
the DTD to construct the target XML tree. The values of the
variable
�� are used to control the construction.

As an example, consider publishing (simplified) GO [7]
data in XML. The GO data is stored in a relational database,
which, as show in Fig. 1, consists of three relations for GO

terms: primary term stores the GO id, name and the
date of the last update for each primary term; similarly
for other terms; as a term may be composed of other
terms, the composition hierarchy is given by the ances-
tors relation (keys are underlined). The database has also
two relations for proteins: main specifies the id, name
and source of each protein; and protein2go tells how
terms and proteins are related.

Now one wants to construct a target XML document �
that contains all the primary terms immediately under the
root, along with their composition hierarchy and the pro-
teins they are related to. Furthermore, � is required to con-
form to the DTD ��� given in Fig. 1. Observe that ��� is
recursive: a term may have other terms as its children;
this leads to XML trees of unbounded depths.

An ATG ��� specifying the publishing is shown in Fig. 3.

pname pid source

db

term term

term term

children proteinstname updatedid

children tname updatedid proteins

protein

term

term

... ...

protein
...

Figure 2: An XML tree conforming to � �
When being evaluated over the GO database, � � produces a
target XML tree � as depicted in Fig. 2, as follows.
(1) It first creates the root element, db, and then triggers
the rules associated with the production db � term*.
Observe that the production contains a Kleene star; thus
there is no bound on the number of the term children of
the root. These children are determined by the evaluation
of the SQL query ��� over the GO database, which returns
all the primary term tuples. For each � of these tuples,
a term element is created as a child of the root, carrying �
as the value of its variable
�� �"!�# . The operator “ $ ” in the
rule denotes the iteration for generating the term children,
corresponding to the Kleene star.

(2) At each term element � , the XML tree � is expanded by
generating the children of � . In contrast to the last case, the
production for term tells us that � has exactly five chil-
dren: children, id, name, updated and source.
The variables associated with these children are assigned
values extracted from fields of the parent variable
�� �"!�# ,
e.g.,
�%'&�(*),+-!��". inherits the value
�� �/!�#10 243 (5+ .

(3) At each children element % , the target tree � is fur-
ther expanded as follows. The SQL query �76 finds the
243 (*+ s of all the children terms of % from the ancestors
relation, by using
�%'&�(*),+-!��".�0 2�3 (5+ as a constant parameter;
it then extracts tuples from the term relation using these
243 (*+ s. For each �98 of these tuples, a term child of % is cre-
ated carrying �98 as the value of its variable, and the term
node is in turn processed as described in (2).

(4) Similarly, at each proteins child : of term � , the
SQL query �<; extracts all the protein tuples related to
� from the main and protein2go relations, by using

=:>!�3�� �/(*.@?A0 2�3 (5+ as a constant. For each of these tuples a
protein child of : is generated, whose children are in
turn created as described in (2).

Steps (2) and (3) are repeated until the target tree �
cannot be further expanded, i.e., when all the terms at the
leaves of � are no longer composed of other terms. At
this point the evaluation of the ATG is completed.

ATG has several salient features. First, when the evalu-
ation of an ATG terminates, the target XML tree generated
is guaranteed to conform to its embedded DTD. Second, it
adopts a data-driven semantics: the expansion of an XML

tree in the recursive case are determined by the source data.
Third, it is easy to use ATGs to specify schema-directed
XML publishing. The DTD productions provide a guidance
on how to write semantic rules to expand the tree that con-
forms to the DTD. There is no need to learn a new language:
one can write ATGs as long as she/he knows SQL and DTD.

db � term*���
: $term � select go id, name, updated from primary terms

term � children, id, tname, updated, proteins
$children = $term.go id, $id = $term.go id,
$tname = $term.name, $updated = $term.updated,
$proteins = $term.go id,

children � term*���
: $term � select t.go id, t.name, t.updated

from ancestors a, terms t
where $children = a.parent id and a.child id = t.go id

proteins � protein*���
: $protein � select m.name, m.protein id, m.source

from protein2go p, main m
where $proteins = p.go id and

p.protein id = m.protein id
protein � pname, pid, source

$pname = $protein.name, $pid = $protein.go id,
$source = $protein.source

Figure 3: An example ATG ���
3 Incremental Updates

The incremental update problem for ATGs can be stated as
follows: given an ATG � , a relational database � , the XML

view �
	 ���,�
 , and changes ��� to � , to compute XML

changes ��� to � such that �
������	 ���,�������
 , where
the operator � denotes the application of these updates. In
contrast to recomputing the new view from scratch, incre-
mental update of ATGs improves performance by applying
only the changes ��� to the old view � .

Our incremental algorithm [4] is based on a notion of
� ATG. A � ATG ��� is statically derived from an ATG �
by deducing and incrementalizing SQL queries for generat-
ing edges of XML views. In response to relational changes
��� to the source data, ��� computes XML changes ���
via the incrementalized SQL queries, which yield a pair
of relations �����������
 , denoting the insertions (buds) and
deletions (cuts) of the edges of the old XML view � , re-
spectively. More specifically this is carried out in three
phases: (1) a bud-cut generation phase that determines the
impact of ��� on existing parent-child (edge) relations in
the old XML view � by evaluating a fixed number of incre-
mentalized SQL queries; (2) a bud completion phase that
iteratively computes newly inserted subtrees top-down by
pushing SQL queries to the relational DBMS; and finally,
(3) a garbage collection process that removes the deleted
subtrees. It minimizes unnecessary recomputations via a
novel caching strategy such that each new subtree in the
XML view is computed at most once no matter how many
times it occurs in the XML view, and moreover, it maxi-
mally reuses subtrees in the old XML view. The caching
strategy is based on the subtree property of XML data and
ATGs: each subtree in an XML view generated by an ATG is
uniquely determined by the tuple-value of the variable as-
sociated with the subtree root. This allows us to efficiently
identify and reuse existing subtrees via a hash table.

As an example, consider changes ��� to the GO database
� that modify the ancestors relations of terms, which
can be understood as group updates consisting of inser-
tions and deletions of multiple ancestors tuples. Re-
ferring to the XML view � of Fig. 2 generated by � � �,�
 ,

the corresponding XML changes ��� are computed as fol-
lows. The bud-cut-generation phase generates a set of cuts
to the (children, term) edges of � , as well as a set of
buds �������! consisting of the newly inserted term tuples,
in response to ��� . It then deletes the edge of the cuts,
and creates a term node for each tuple in � �����! , along
with edges from the root db or children elements to
these terms. Then, the bud-completion phase generates
the subtrees for these new terms, maximumly reusing the
subtrees that have been computed or are already in � by
capitalizing on the subtree property. Finally, after the sub-
tree are constructed, the garbage collection process runs in
the background to remove the subtrees deleted by the cuts.
Note that the physical deletion is delayed such that the re-
moved subtrees can be reused in the bud-completion phase.

Another salient feature of the incremental algorithm is
that it computes ��� in parallel with the updating process
of � with ��� . More specifically, each iteration in the gen-
eration phase computes �7� to a certain depth below newly
added buds, and thus partial results of the new XML view
can be returned to the users before the computation of �7�
is completed; this allows lazy evaluation that overlaps the
view update process with client access.

4 System Architecture

Our middleware supports two evaluation modes: publish-
ing and incremental updates. See Fig. 4 for its architecture.

In the ATG-based XML publishing mode, the system
takes an ATG � and a source relational database � as input
and generates a target XML view �"	 ���	��
 that conforms
to the DTD embedded in � . Specifically, it parses � , gener-
ates a query plan for evaluating the SQL queries embedded
in � , and pushes the SQL queries down to the underlying
DBMS to extract data from the source � . The system has
fully implemented the optimization techniques proposed
in [3], including query composition to reduce communica-
tion cost between the middleware and the DBMS. The XML

view � is stored in a subtree pool with a hash table built on
top of it, leveraging the subtree property described early.

In the incremental update mode, the system accepts
SQL updates and a handle (name) for an ATG � (see also
Fig. 5(a)); it then conducts the relational updates, derives
��� , evaluates ��� using our incremental algorithm to com-
pute XML changes to the corresponding XML view, and up-
dates the subtree pool and the hash table accordingly, as de-
scribed in the last section. Alternatively, the system allows
the underlying DBMS to function independently and accept
updates; an update monitor (not explored in [4]) detects
source updates, and triggers our incremental algorithm to
propagate the changes to XML views automatically.

The user interface of the system is shown in Fig. 5(a). In
a window one can select and display a source schema and
an ATG; the system also supports an interface for accepting
SQL updates, and for the choice of ATG publishing or in-
cremental updates. A graphic tool is provided to facilitate
ATG design. Output XML data is browsed by popping up
another window (Fig. 5(b)).

Subtree
pool

Evaluation
optimization

Query
composition

Publishing
Update
monitor

Relational
updates

ATG

I

I

SQL

Delta queries
generation

XML
View

ATG

SQL

T T

T

GO: Gene Ontology Database at EBI

Graphical User Interface
incremental

publish

for subtrees
hash index

Incremental maintenance

Incremental

algorithm
update

Figure 4: System architecture

(a) Visual user interface

(b) XML data before and after updates

Figure 5: User Interface

5 Demonstration Overview

The demonstration will show the following.

Schema-directed publishing. To illustrate the main as-
pects of ATG-based XML publishing, we show how to pub-
lish Gene Ontology (GO) data in XML w.r.t. predefined re-
cursive DTDs via ATGs. We demonstrate that our system is
efficient when dealing with the real-life data.

Incremental updates. To verify the effectiveness of our
incremental algorithm, we show how source updates can
be efficiently propagated to XML views created by ATGs in
contrast to the recomputation approach: the former takes
seconds to evaluate while the latter takes minutes.

Aids to ATG specification. We provide a graphic user in-
terface to facilitate ATG design (Fig. 5(a)). An ATG is de-
picted as a graph, in which each edge represents a parent-
child relation in a production in the target DTD. Clicking
on the edge, a text window displays the corresponding se-
mantic rule and allows the user to display and edit the rule.

Aids to answer analysis. We also demonstrate graphic
tools for viewing the published XML data, and for illustrat-
ing update propagation from source to target by comparing
XML views before and after updates (Fig. 5(b)).

References
[1] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking

XML views of relational databases. In LICS, 2001.

[2] M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and R. Rastogi. Cap-
turing both types and constraints in data integration. In SIGMOD,
2003.

[3] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and
A. Zhou. DTD-directed publishing with attribute translation gram-
mars. In VLDB, 2002.

[4] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of
schema-directed XML publishing. In SIGMOD, 2004.

[5] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and P. Shenoy. Op-
timizing view queries in ROLEX to support navigable result trees.
In VLDB, 2002.

[6] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasundaram,
E. J. Shekita, and S. N. Subramanian. XPERANTO: Publishing
object-relational data as XML. In WebDB, 2000.

[7] EBI. Gene Ontology. http://www.geneontology.org/.

[8] M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W. C.
Tan. SilkRoute: A framework for publishing relational data in XML.
TODS, 27(4):438–493, 2002.

[9] Intelligent Systems Research. XML from databases: ODBC2XML.
http://www.intsysr.com/odbc2xml.htm.

[10] Oracle. Using XML in Oracle internet applications.
http://technet.oracle.com/tech/xml/.

