
Query Translation from XPath to SQL in the Presence of
Recursive DTDs

Abstract

We study the problem of evaluating xpath queries over xml data that is stored in an

rdbms via schema-based shredding. The interaction between recursion in xpath queries and

recursion in dtds makes it challenging to answer xpath queries using rdbms. We present

a new approach to translating xpath queries into sql queries based on a notion of regular

xpath expressions and a simple least fixpoint (lfp) operator. Regular xpath expressions

are a mild extension of xpath, and the lfp operator takes a single input relation and is

already supported by most commercial rdbms. We show that regular xpath expressions

are capable of capturing both dtd recursion and xpath queries in a uniform framework.

Furthermore, they can be translated into an equivalent sequence of sql queries with the lfp

operator. We present algorithms for rewriting xpath queries into regular xpath expressions

and for translating regular xpath expressions to sql queries. We also provide optimization

techniques for minimizing the use of the lfp operator. The novelty of our approach consists

in its capability to answer a large class of xpath queries by means of only low-end rdbms

features already available in most rdbms, as well as its flexibility to accommodate existing

relational query optimization techniques. Our experimental results verify the effectiveness

of our techniques.

1 Introduction

It is increasingly common to find xml data stored in a relational database system (rdbms),

typically based on dtd/schema-based shredding into relations [34] as found in many commercial

products (e.g., [17, 26, 29]). With this comes the need for answering xml queries using rdbms,

by translating xml queries to sql.

The query translation problem can be stated as follows. Consider a mapping τd, defined in

terms of dtd-based shredding, from xml documents conforming to a dtd D to relations of a

schema R. Given an xml query Q, we want to find (a sequence of) equivalent sql queries Q′

such that for any xml document T conforming to D, Q over T can be answered by Q′ over the

instance τd(T) of R that represents T , i.e., Q(T) = Q′(τd(T)). Here we allow dtds D to be

recursive and consider queries Q in xpath [9], which is essential for other xml query languages

such as XQuery and XSLT.

The query translation problem is, however, nontrivial: dtds (or xml Schema) found in

practice are often recursive [7] and complex. This is particularly evident in real-life applications

(see, e.g., BIOML [6] and GedML [15], which, when represented as graphs, contains a number of

nested and overlapping cycles). The interaction between recursion in a dtd and recursion in an

xml query complicates the translation. When the dtd has a tree or DAG structure, a natural

approach [18] is based on enumerating all matching paths of the input xpath query in a dtd,

sharing a single representation of common sub-paths, rewriting these paths into sql queries, and

1

taking a union of these queries. However, this approach no longer works on recursive dtds since

it may lead to infinitely many paths when dealing with descendants ‘//’ in xpath. Another

approach is by means of a rich intermediate language and middleware as proposed in [32]:

first express input xml queries in the intermediate language, and then evaluate the translated

queries leveraging the computing power of the middleware and the underlying rdbms. However,

as pointed out by a recent survey [22], this approach requires implementation of the middleware

on top of rdbms, and introduces communication overhead between the middleware and the

rdbms, among other things. It is more convenient and possibly more efficient to translate

xpath queries to sql and push the work (sql queries) to the underlying rdbms, capitalizing

on the rdbms to evaluate and optimize the queries. This, however, calls for an extension of sql

to support certain recursive operator. As observed by [22], although there has been a host of

work on storing and querying xml using an rdbms [10, 14, 18, 21, 25, 32, 33], the problem of

translating recursive xml queries into sql in the presence of recursive dtds has not been well

studied, and it was singled out as the most important open problem in [22].

Recently an elegant approach was proposed in [21] to translating path queries to sql with

the linear-recursion construct with...recursive of sql’99. The algorithm of [21] is capable of

translating path queries with // and limited qualifiers to (a sequence of) sql queries with

the sql’99 recursion operator. Unfortunately, this approach has several limitations. The

first weakness is that it relies on the sql’99 recursion functionality, which is not currently

supported by many commercial products including Oracle and Microsoft sql server. One wants

an effective query translation approach that works with a wide variety of products supporting

low-end recursion functionality, rather than requiring an advanced dbms feature of only the

most sophisticated systems. Second, the sql queries with the sql’99 recursion produced by

the translation algorithm of [21] are typically large and complex. As a result, they may not be

effectively optimized by all platforms supporting sql’99 recursion for the same reasons that not

all rdbms platforms can effectively optimize mildly complex non-recursive queries [13]. Worse

still, as the with...recursive operator is treated as a blackbox, the user can do little to optimize it.

A third problem is that the class of path query handled by the algorithm of [21] is too restricted

to express xpath queries commonly found in practice.

In light of this we propose a new approach to translating a class of xpath queries to sql,

based on a notion of regular xpath expressions and a simple least fixpoint (lfp) operator. Our

regular xpath expressions extend xpath by supporting general Kleene closure E∗ instead of

//. The lfp operator Φ(R) takes a single input relation R instead of multiple relations as

required by the sql’99 with...recursion operator. It is already supported by many commercial

systems such as Oracle (connectby) and IBM DB2 (with...recursion), and will be supported by

Microsoft sql server 2005 (common table [28]). We show that regular xpath expressions are

capable of expressing a large class of xpath queries over a (recursive) dtd D, by substituting

the general Kleene closure E∗ for //, and by giving a finite representation of possibly infinite

matching paths of an xpath query in terms of E∗. That is, regular xpath expressions capture

both dtd recursion and xpath recursion in a uniform framework. Moreover, we show that each

regular xpath expression can be rewritten to a sequence of equivalent sql queries with the lfp

operator. That is, low-end rdbms features (sql with Φ(R)) suffice to support complex xpath

queries.

2

Taken together, our approach works as follows. Given an xpath query Q, we first rewrite

Q into a regular xpath expression EQ, and then translate EQ to an equivalent sequence Q′ of

sql queries. Both EQ and Q′ are bounded by a low polynomial in the size of the input query Q

and the dtd D. To this end we provide an efficient algorithm for translating an xpath query

over a (recursive) dtd D to an equivalent regular xpath expression, and a novel algorithm

for rewriting a regular xpath expression into a sequence of sql queries with the lfp operator.

Furthermore, we introduce optimization techniques to minimize the use of the lfp operator in

the rewritten sql queries.

Contributions. The main contributions include the following.

• A notion of regular xpath expressions that captures dtd recursion and xpath recursion

in a uniform framework.

• The use of the simple lfp operator commonly found in commercial products to express a

large class of xpath queries.

• An efficient algorithm for translating xpath queries into regular xpath expressions, based

on dynamic programming.

• A novel algorithm for rewriting a regular xpath expression to a sequence of sql queries

with the lfp operator.

• New optimization techniques for minimizing the use of the lfp operator in sql translation

of xpath queries.

• Experimental results verifying the effectiveness of our approach and techniques, using

real-life xml dtds.

Our approach has several salient features. (1) It requires only low-end rdbms features

instead of the advanced sql’99 recursion functionality. As a result it provides a variety of

commercial rdbms with an immediate capability to answer xpath queries over recursive dtds.

(2) It produces sql queries that are less complex than their counterparts generated with the

sql’99 recursion, and can be optimized by most rdbms platforms. Furthermore, it can easily

accommodate optimization techniques developed for sql queries, e.g., multi-query [30] and

recursive sql query optimization [31]. (3) It is capable of handling a class of xpath queries

supporting child, descendants and union as well as rich qualifiers with data values, conjunction,

disjunction and negation, which are beyond those studied in earlier proposals. These thus yield

an effective and efficient method that works with most rdbms products, to answer a large class

of xpath queries found in practice. This work is also a concrete step toward answering xpath

queries over (virtual) recursive xml views of relational data.

Organization. Section 2 reviews dtds, xpath and schema-based mapping from xml to

relations. Section 3 outlines our query translation approach as opposed to the one given in [21].

Section 4 provides an algorithm for translating xpath queries to regular xpath expressions,

followed by an algorithm for rewriting regular xpath expressions into sql with a simple lfp

operator in Section 5. Experimental results are presented in Section 6, followed by related work

in Section 7. Finally, Section 8 concludes the paper.

3

course*

*

student

name

*
project

*

requiredptitlepno

dept
*

titlecno *takenByprereq

sno qualified

(a)

*RcRd * Rs Rp

*

* *

*
(b)

Figure 1: A graph representation of the dept dtd.

2 DTD, XPath, and Schema-Based Shredding

In this section, we review dtds, xpath queries, and dtd-based shredding of xml data into

relations.

2.1 DTDs

Without loss of generality, we represent a dtd D as an extended context-free grammar of the

form (Ele,Rg, r), where Ele is a finite set of element types; r is a distinguished type, called the

root type; and Rg defines the element types: for any A in Ele, Rg(A) is a regular expression of

the following form:

α ::= ǫ | B | α,α | (α | α) | α∗,

where ǫ is the empty word, B is a type in Ele (referred to as a subelement type of A), and

‘|’, ‘,’ and ‘∗’ denote disjunction, concatenation and the Kleene star, respectively. We refer to

A → Rg(A) as the production of A. To simplify the discussion we do not consider attributes,

and we assume that an element v may possibly carry a text value (PCDATA) denoted by v.val.

An xml document that conforms to a dtd is called an xml tree of the dtd.

Along the same lines as [34], we represent dtd D as a graph, called the dtd graph of D

and denoted by GD. In GD, each node represents a distinct element type A in D, called the A

node, and an edge represents the parent/child relationship. More specifically, for any production

A → α, there is an edge from the A node to the B node for each subelement type B in α; the

edge is labeled with ‘∗’ if B is enclosed in α∗

0 for some sub-expression α0 of α. This simple

graph representation of dtds suffices since, as will be seen shortly, we do not consider ordering

in xpath. When it is clear from the context, we shall use dtd and its graph interchangeably.

A dtd D is recursive if it has an element type that is defined (directly or indirectly) in terms

of itself. Note that the dtd graph GD of D is cyclic if D is recursive. A dtd graph GD is called

a n-cycle graph if GD consists of n simple cycles. Here, a simple cycle refers to a cycle in which

no node appears more than once.

Example 2.1: We consider a dept dtd as our running example.

<!ELEMENT dept course*>

<!ELEMENT course (cno, title, prereq, takenBy, project)>

<!ELEMENT prereq course*>

<!ELEMENT student (sno, name, qualified)>

<!ELEMENT qualified course*>

<!ELEMENT project (pno, ptitle, required)>

4

<!ELEMENT required course*>

A dept has a list of course elements. A course consists of a cno (course code), a title, a

prerequisite hierarchy (via prereq), and all the students who have registered for the course (via

takenBy). A student has a sno (student number), a name and a list of qualified courses. A

course may have several projects. Each project has a pno (project number), a ptitle (title)

and required knowledge of other courses (required). Its dtd graph, a 3-cycle graph, is shown

in Fig. 1 (a). 2

2.2 XPath Queries

We consider a class of xpath queries [9] that supports recursion (descendants) and rich qualifiers,

given as follows.

p ::= ǫ | A | ∗ | p/p | //p | p ∪ p | p[q]

where ǫ, A and ∗ denote the empty path, a label and a wildcard, respectively; ‘∪’, ‘/’ and ‘//’

are union, child-axis and descendant-or-self-axis, respectively; and q is called a qualifier, defined

as

q ::= p | text() = c | ¬q | q ∧ q | q ∨ q

where c is a constant, and p is defined above.

An xpath query p, when evaluated at a context node v in an xml tree T , returns the set

of nodes of T reachable via p from v, denoted by v[[p]]. Qualifiers are interpreted as follows:

at a context node v, the atomic predicate [p] holds iff v[[p]] is nonempty, i.e., there exists a

node reachable via p from v; and [text() = c] is true iff v.val equals the constant c. The boolean

operations are self-explanatory. We also use ∅ to denote a special query, which returns the empty

set over all xml trees, with ∅ ∪ p equivalent to p and p/∅/p′ equivalent to ∅. To simplify the

discussion we assume that qualifiers [text() = c] and [¬q] only appear in the form of p[text() = c]

and p[¬q] where p is an xpath query that is not ǫ.

Note that this class of xpath queries properly contains branching path queries studied in [21]

and tree pattern queries. In the sequel, we refer to this class of queries simply as xpath queries.

Example 2.2: Consider two xpath queries.

Q1 = dept//project

Q2 = dept/course[//prereq/course/cno="cs66" ∧ ¬//project

∧ ¬takenBy/student/qualified//course/cno = "cs66"]

Over an xml tree of the dept dtd of Fig.1, the first xpath query is to find all course-related

projects, and the second one is to find courses that (1) have a prerequisite cs66, (2) have no

project related to them or to their prerequisites, but (3) also have a student who registered for

the course but did not take cs66. 2

2.3 Mapping DTDs into a Database Schema

We next review shredding of xml data into relations. We focus on a dtd-based approach since

it is supported by most rdbms [17, 26, 29], rather than schema-oblivious xml storage methods.

5

F T

- d1

(a) Rd

F T

d1 c1

c1 c2

c2 c3

p1 c4

s2 c5

(b) Rc

F T

c1 s1

c1 s2

(c) Rs

F T

c2 p1

c4 p2

(d) Rp

Table 1: A database encoding an xml tree of the dept dtd

We adopt the shared-inlining technique of [34]. In a nutshell, the inlining algorithm partitions

a dtd graph GD into subgraphs, G1, G2, · · · such that any A-node is represented in exactly one

subgraph and there is no edge labeled ‘∗’ in any subgraph. Each subgraph Gi is mapped to a

relation schema Ri. Each relation schema has a key attribute ID. The edges from a subgraph

Gi to a subgraph Gj are specified using parentId in the corresponding relation schema Rj. If a

subgraph Gj has more than one incoming edges, say from Gi and Gk, a parentCode attribute is

introduced into the relation schema Rj indicating the parent code of the Rj tuples.

We use τ : D → R to denote a mapping from dtd D to a relational database schema R,

which consists of a set of relation schemas. Observe that from τ one can easily derive a data

mapping, denoted by τd, from xml trees of D to instances of R.

To simplify the discussion we assume that the mapping τ maps each element type A to a

relation RA in R, which has three columns F (from, i.e., parentId), T (to, i.e., ID) and V (value

of all other attributes). Intuitively, in a database τd(T) representing an xml tree T , each RA

tuple (f, t, v) represents an edge in T from a node f to an A-element t which may have a text

value v, where t and f are denoted by the node IDs in T and are thus unique in the database,

and v is ‘ ’ in the absence of text value at t. In particular, f = ‘ ’ if and only if f is the root

of T . This assumption does not lose generality: our query translation techniques can be easily

extended to cope with mappings without this restriction.

Example 2.3: With the shared-inlining technique, the dtd graph GD of Fig. 1 (a) is partitioned

into four subgraphs rooted at dept, course, project, and student, respectively (see Fig. 1 (b)).

It is mapped to a relational database schema τ(D) consisting of four corresponding relation

schemas, Rd, Rc, Rp and Rs:

Rd(F, T)

Rc(F, T, cno, title, prereq, takenBy, parentCode)

Rs(F, T, sno, name, qualified)

Rp(F, T, pno, ptitle, required)

A sample database is shown in Table 1, which only shows F and T attributes. From Table 1

one can find paths in the xml tree of the dept dtd, e.g., d1.c1.c2.c3 and d1.c1.c2.p1.c4.p2. 2

3 Overview: From XPath to SQL

The query translation problem from xpath to sql is stated as follows. Let τ : D → R be a

mapping from a dtd D to a relational schema R, and τd be the corresponding data mapping

from xml trees of D to the relational instance of R. The problem is to find an algorithm that,

given an xpath query Q, effectively computes an equivalent sequence of relational queries Q′

such that for any xml tree T of the dtd D, Q(T) = Q′(τd(T)).

6

In this section we first review the approach proposed by [21], the only solution published

so far for the query translation problem in the presence of recursive dtds. To overcome its

limitations, we then propose a new approach and outline it in this section; detailed algorithms

are provided in the next two sections.

3.1 Linear Recursion of SQL’99

The algorithm of [21], referred to as SQLGen-R, handles recursive path queries over recursive

dtds based on the sql’99 recursion operator. In a nutshell, given an input path query, SQLGen-R

first derives a query graph, GQ, from the dtd graph to represent all matching paths of the query

in the dtd graph. It then partitions GQ into strongly-connected components c1, . . . , cn, sorted

in the top-down topological order. It generates an sql query Qi for each ci in the topological

order, and associates Qi with a temporary relation TRi such that TRi can be directly used

in later queries Qj for j > i. The sequence TR1 ← Q1; . . . ; TRn ← Qn is the output of the

algorithm. If a component ci is cyclic, the sql query Qi is defined in terms of the with...recursive

operator. More specifically, it generates two parts from ci: an initialization part and a recursive

part. The initialization part captures all “incoming edges” into ci. The recursion part first

creates an sql query for each edge in ci, and then encloses the union of all these (edge) queries

in a with...recursive expression. It should be noted that if ci has k edges, the query Qi actually

calls for a fixpoint operator φ(R,R1, R2, · · ·Rk) with k + 1 input relations, defined as follows:

R0 ← R (1)

Ri ← Ri−1 ∪ (Ri−1
1 R1) ∪ · · · ∪ (Ri−1

1 Rk)

where R0 corresponds to the initialization part, and Rj corresponds to an sql query coding an

edge in ci for each j ∈ [1, k].

Example 3.1: Recall the mapping from the dept dtd to the relational schema R consisting

of Rs, Rc, Rp, Rd given in Example 2.3, and the xpath query Q1 = dept//project given in

Example 2.2, which, over the dtd graph of Fig. 1 (b), indicates Rd//Rp. Given Q1 and the dtd

graph of Fig. 1 (b), the algorithm SQLGen-R finds a strongly-connected component (Rc//Rp)

having 3 nodes and 5 edges, and produces a single sql query using a with...recursive expression,

as shown in Fig. 2. More specifically, the initial part of the recursion is given in lines 3-4, while

the recursion part is lines 6-19. Each edge in the graph Fig.1 (b) is translated into a select

statement. Observe that in the select statement, it uses Rid to keep track of where the tuples in

the result relation R come from. For example, the select statement for the edge Rc → Rc (lines 6-

7) inserts a tuple into the result relation R with its F and T values in addition to a Rid value

’c’ indicating that it is from relation Rc. The usage of Rid is to join right parent/child tuples.

As line 10 shows, in the select statement for the edge Rc → Rs, it needs to join with tuples in

R that is originally from Rc (Rid = ’c’). Similarly for Rs → Rc, Rc → Rp, and Rp → Rc (lines

12-13, 15-16 and 18-19, respectively). When evaluated over the relational database of Table 1,

the query of Fig. 2 returns the result shown in Table 2. Using a selection on Rid = ‘p’ on Table

2, one can find that p1 and p2 are the descendants of p. 2

Observe the following about the query of Fig. 2. First, it actually requires a fixpoint operator

that takes 4 relations as input. As we have remarked in Section 1, while most commercial rdbms

7

1. with
2. R (F, T,Rid) as (
3. (select Rc.F , Rc.T , Rid(’c’) from Rd, Rc)
4. where Rc.T = Rd.F
5. union all
6. (select R.F , Rc.T , Rid(’c’)
7. from R,Rc where R.T = Rc.F and Rid = ’c’)
8. union all
9. (select R.F , Rs.T , Rid(’s’)
10. from R,Rs where R.T = Rs.F and Rid = ’c’)
11. union all
12. (select R.F , Rc.T , Rid(’c’)
13. from R,Rc where R.T = Rc.F and Rid = ’s’)
14. union all
15. (select R.F , Rp.T , Rid(’p’)
16. from R,Rp where R.T = Rp.F and Rid = ’c’)
17. union all
18. (select R.F , Rc.T , Rid(’c’)
19. from R,Rc where R.T = Rc.F and Rid = ’p’))

Figure 2: The sql statement generated by SQLGen-R

iteration F T Rid

0 d1 c1 ’c’

1 c1 c2 ’c’
c1 s1 ’s’
c1 s2 ’s’

2 c2 c3 ’c’
c2 p1 ’p’
s2 c5 ’c’

3 p1 c4 ’c’

4 c4 p2 ’p’

Table 2: An output of SQLGen-R at each iteration.

support a lfp Φ(R) that takes a single input relation, the functionality of φ(R,R1, R2, · · ·Rk) is

a high-end feature that few rdbms support. Second, it is a complex query consisting of 5 joins

and 5 unions. That is, each iteration of the fixpoint computation needs to compute 5 joins and

5 unions. Third, with...recursive is treated as a black box. In this example, all 5 relations join

the result relation R in the center, which forms a star shape. The relation in the center keeps

growing, but one can do little to optimize the operations inside the with...recursion expression.

3.2 A New Approach

To overcome the limitations of the previous approach, we propose a new approach to translating

xpath queries to sql, based on a notion of extended xpath expressions and the simple lfp

operator Φ(R). Below we first define regular xpath expressions and review the simple lfp

operator. We then outline our approach.

8

Regular xpath expressions. A regular xpath expression E over a dtd D is syntactically

defined as follows:

E ::= ǫ | A | E/E | E ∪ E | E∗ | E[q],

q ::= E | text() = c | ¬q | q ∧ q | q ∨ q.

where A is a label (an element type) in D. The semantics of evaluating E over an xml tree is

similar to its xpath counterpart.

Regular xpath expressions are the “least upper bound” of xpath and regular expressions.

They differ from xpath queries in that, first, they support general Kleene closure E∗ as opposed

to restricted recursion ‘//’, and second, they do not allow wildcard ∗ and descendant ‘//’. They

extend regular expressions by supporting qualifiers. The motivation for using E∗ instead of

‘//’ is twofold. First, the expressive power of E∗ is required for encoding both dtd recursion

and xpath recursion. As will be seen shortly, with E∗ one can define a finite representation

of (possibly infinite) matching paths of an xpath query over a recursive dtd. Second, E∗

“instantiates” // with paths in the dtd. In a nutshell, E takes a union of all matching simple

cycles of // and E∗ then applies the Kleene closure to the union; each of these paths can then

be mapped to a sequence of relations connected with joins. Furthermore, E∗ introduces more

opportunities for optimizing a query than //.

The simple lfp operator. The lfp operator Φ(R) takes a single input relation R, as shown

below.

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
1 R0) (2)

This lfp operator is already supported by most commercial products. For example, the

implementations of Φ(R) in Oracle and IBM DB2 are shown in Fig. 3.

To illustrate how the lfp operator handles Kleene closure, consider a regular xpath

expression (A2/ · · · /An/A1)
∗ representing a simple cycle A1 → · · · → An → A1. This simple

regular xpath expression can be rewritten into Φ(R) (Eq. (2)) by letting

R← ΠR2.F,R1.T (R2 1 R3 1 · · · 1 Rn 1 R1) (3)

Here, the projected attributes are taken from the attributes F (from) and T (to) in relations R1

and Rn, respectively. The join between Ri/Rj is expressed as Ri 1Ri.T=Rj .F Rj , i.e., it returns

Ri tuples that connect to Rj tuples. In general, we rewrite E∗ to Φ(R), where R is a temporary

relation associated with a query coding E.

In contrast to Φ(R) which takes a single input relation R, the least fixpoint operator φ

(Eq. (1)) can take an unbounded number k of input relations. One might be tempted to think

that Eq. (1) can be coded with Eq. (2), as follows:

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
1 R′)

9

lfp Φ(R) in Oracle
select F , T from R connect by F = prior T

lfp Φ(R) in DB2
1. with
2. RΦ(F, T) as (
3. (select F , T from R)
4. union all
5. (select RΦ.F , R.T from RΦ, R where RΦ.T = R.F))

Figure 3: Implementation of lfp in Oracle and DB2

EQ
Q’

DTD D Dmapping from to R

output input XPath
query Q to regular XPath expression

translation from XPath Q
to a sequence of SQL queries
translation from regular XPath

with the simple operatorlfp

Figure 4: Translation from XPath to SQL

where R′ = ∪k
j=1Rj . This is unfortunately incorrect since different conditions are associated with

different joins in Eq. (1). Indeed, observe that different select statements (joins) in the query

of Fig. 2 have different conditions. As a result, taking a big union of the relations in the from

clauses of these select statements may either lead to incorrect answer, or yield a horrendously

large query and relation (when outer union is used instead of union).

A new approach for query translation. Based on the lfp operator Φ(R) and regular xpath

expressions, we propose a new framework for translating xpath to sql. As depicted in Fig. 4,

the framework translates an input xpath query Q to sql in two steps. First, it rewrites Q over

a (recursive) dtd D to an equivalent regular xpath expression EQ over D. Second, it rewrites

EQ into an equivalent sequence Q′ of sql queries based on a mapping τ : D →R, and using the

lfp operator to handle Kleene closure. Indeed, in Section 4 we present a translation algorithm

to show that every xpath query Q over a (recursive) dtd D can be rewritten to an equivalent

regular xpath expression EQ over D. Then, we provide another algorithm in Section 5 to show

that the simple lfp operator Φ(R) suffices to handle general Kleene closure in a regular xpath

expression EQ. Furthermore, the regular xpath expression EQ and sql queries Q′ are both

bounded by a low polynomial in the size |Q| of the xpath query Q and the size |D| of the dtd

D.

Example 3.2: Let us consider again evaluating the xpath query Q1 = dept//project over

the dept dtd of Fig. 1, in the same setting as in Example 3.1. Our translation algorithms first

translate Q1 to a regular xpath query EQ1
= Rd/Rc/E

∗/Rp, where E = (Rc∪Rs/Rc∪Rp/Rc).

It then rewrites EQ1
to a sequence of sql queries (written in relational algebra):

10

Rcc ← Rc

Rcsc ← ΠRs.F,Rc.T (Rs 1Rs.T=Rc.F Rc)

Rcpc ← ΠRp.F,Rc.T (Rp 1Rp.T=Rc.F Rc)

R ← Rcc ∪Rcsc ∪Rcpc

Rγ ← Φ(R) ∪ΠT,T (Rc)

Rf ← ΠRd.T,Rp.T (Rd 1Rd.T=Rc.F Rc 1Rc.T=Rγ .F Rγ

1Rγ .T=Rp.F Rp)

The above sequence is the output of our algorithms. 2

Contrast Example 3.2 with the sql query of Fig. 2. While our sql queries use 3 unions

and 5 joins in total, they are evaluated once only, instead of once in each iteration of the lfp

computation. In other words, we pull join/union out from the black box of with...recursive.

This not only gives us more opportunities to optimize join/union, but also allows us to push

selection conditions into the fixpoint operator, along the same lines as the lfp optimization by

distribution of selections suggested by [2].

4 From XPath to Regular XPath

In this section, we first present an algorithm for rewriting an xpath query Q over a (recursive)

dtd D to an equivalent regular xpath query EQ over D such that for any xml tree T of D,

Q(T) = EQ(T). We then introduce an optimization technique that can be incorporated into the

algorithm to minimize the number of Kleene closures in EQ.

4.1 Translation Algorithm

The algorithm, XPathToReg, is based on dynamic programming: for each sub-query p of the

input query Q and each type A in D, it computes a local translation Ep = x2r(p,A) from xpath

p to a regular xpath query Ep, such that p and Ep are equivalent when being evaluated at any

A element. Composing the local translations one will get the rewriting EQ = x2r(Q, r) from Q

to EQ, where r is the root type of D. For each x2r(p,A) the algorithm “evaluates” p over the

sub-graph of the dtd graph GD rooted at A, substituting regular expressions over element types

for wildcard ∗ and descendants //, by incorporating the structure of the dtd into Ep. This also

allows us to “optimize” the xpath query by capitalizing on the dtd structure: certain qualifiers

in p can be evaluated to their truth values and thus be eliminated during the translation.

To conduct the dynamic-programming computation, our algorithm uses the following

variables. First, it works over a list L that is a postorder enumeration of the nodes in the

parse tree of p, such that all sub-queries of p (i.e., its descendants in p’s parse tree) precede p in

L. Second, all the element types of the dtd D are put in a list N . Third, for each sub-query p

in L and each node A in N , we use x2r(p,A) to denote the local translation of p at A, which is

a regular xpath expression. We also use reach(p,A) to denote the types in D that are reachable

from A via p. Abusing this notation, we use reach([q], A) for a qualifier [q] to denote whether or

not [q] can be evaluated to false at an A element, indicated by whether or not reach([q], A) is

empty. Finally, for each A and its descendant B in the dtd graph GD of D, we use rec(A,B) to

11

Algorithm XPathToReg

Input: an xpath query Q over a dtd D.
Output: an equivalent regular xpath query EQ over D.

1. compute the ascending list L of sub-queries in Q;
2. compute the list N of all the types in D;
3. for each p in L do
4. for each A in N do
5. if p 6= ǫ// /* x2r(ǫ//, A), reach(ǫ//, A) are precomputed */
6. then x2r(p,A) := ∅; reach(p, A) := ∅;

7. for each p in the order of L do
8. for each A in N do
9. case p of
10. (1) ǫ: x2r(p, A) := ǫ; reach(p,A) := {A};

11. (2) B: if B is a child type of A
12. then x2r(p,A) := B; reach(p,A) := {B};
13. else x2r(p, A) := ∅; reach(p,A) := ∅;

14. (3) ∗: for each child type B of A in D do
15. x2r(p, A) := x2r(p, A) ∪ B; /* ∪: xpath operator */
16. reach(p,A) := reach(p, A) ∪ {B}; /* ∪: set union */

17. (4) p1/p2: if x2r(p1, A) = ∅
18. then x2r(p,A) := ∅; reach(p,A) := ∅;
19. else cons := ∅;
20. for each B in reach(p1, A) do
21. cons := cons ∪ x2r(p2, B);
22. reach(p,A) := reach(p, A) ∪ reach(p2, B);
23. if cons 6= ∅
24. then x2r(p, A) := x2r(p1, A)/cons;
25. else reach(p,A) := ∅; x2r(p, A) := ∅;

26. (5) ǫ//p1: /* reach, rec are already precomputed */
27. for each child C of A do
28. if p1 = B/p′ and reach(p′, B) 6= ∅
29. then x2r(p,A) := x2r(p, A) ∪ rec(C, B)/x2r(p′, B); reach(p,A) := reach(p′, B);
30. else for each B in reach(ǫ//, C) do
31. if x2r(p1, B) 6= ∅
32. then x2r(p, A) := x2r(p,A) ∪ rec(C, B)/x2r(p1, B);
33. reach(p, A) := reach(p, A) ∪ reach(B, p1);

34. (6) p1 ∪ p2: x2r(p,A) := x2r(p1, A) ∪ x2r(p2, A); reach(p,A) := reach(p1, A) ∪ reach(p2, A);
35. (7) p′[q]:
36. for each B in reach(p′, A) do
37. if x2r([q], B) = [ǫ] /* [q] holds at B */
38. then x2r(p, A) := x2r(p,A) ∪ x2r(p′, A); reach(p,A) := reach(p,A) ∪ {B};
39. else if reach([q], B) 6= ∅ /* [q] is not false at B */
40. then x2r(p, A) := x2r(p,A) ∪ x2r(p′, A)[x2r(q, B)]; reach(p, A) := reach(p, A) ∪ {B};

41. (8) [p1]: x2r(p,A) := [x2r(p1, A)]; reach(p, A) := reach(p1, A);

42. (9) p′[text() = c]: x2r(p,A) := x2r(p′, A)[text() = c]; reach(p, A) := reach(p′, A);
43. (10) [q1 ∧ q2]: if reach(q1, A) 6= ∅ and reach(q2, A) 6= ∅
44. then x2r(p,A) := [x2r([q1], A) ∧ x2r([q2], A)]; reach(p, A) := {true};
45. else x2r(p, A) := ∅; reach(p, A) := ∅;

46. (11) [q1 ∨ q2]: if reach(q1, A) 6= ∅ and reach(q2, A) 6= ∅
47. then x2r(p,A) := [x2r([q1], A) ∨ x2r([q2], A)];
48. else if reach(q1, A) 6= ∅ and reach(q2, A) = ∅
49. then x2r(p,A) := [x2r([p1], A)];
50. else if reach(q1, A) = ∅ and reach(q2, A) 6= ∅
51. then x2r(p,A) := [x2r([p2], A)];
52. else x2r(p, A) := ∅;
53. reach(p,A) := reach(q1, A) ∪ reach(q2, A);

54. (12) p′[¬q]: if reach(q, B) = ∅ for all B ∈ reach(p′, A)
55. then x2r(p,A) := x2r(p′, A); reach(p,A) := {true};
56. else x2r(p, A) := x2r(p′, A)[¬x2r([q], A)]; reach(p, A) := reach(p′, A);

57. optimize x2r(Q, r) by removing ∅ using ∅ ∪ E = E, E1/∅/E2 = ∅
58. return x2r(Q, r); /* r is the root of D */

Figure 5: Rewriting algorithm from XPath to regular XPath12

denote the regular expression representing all the paths from A to B in GD, such that rec(A,B)

is equivalent to the xpath query ǫ//B when being evaluated at an A element.

It is a bit tricky to compute rec(A,B) and reach(ǫ//,A) over a recursive dtd. With the

general Kleene closure, one can compute these by using, e.g., Tarjan’s fast algorithm [35], which

finds a regular expression representing all the paths between two nodes in a (cyclic) graph. Thus

rec(A,B), reach(ǫ//,A) can be computed by:

1. for each A in N

2. for each descendant B of A do

3. rec(A,B) := the regular expression found by the algorithm of [35];

4. reach(ǫ//,A) := reach(ǫ//,A) ∪ {B};

The fast algorithm takes O(|D| log |D|) time, and thus so is the size of rec(A,B). In Section 4.2

we shall present another algorithm for computing rec(A,B). Note that rec(A,B) is determined

by the dtd D regardless of the input query Q; thus it can be precomputed for each A,B, once

and for all, and made available to XPathToReg. A second issue concerns the special query ∅,

which returns an empty set over any xml tree, as described in Section 2. In our translation we

use ∅ for optimization purposes.

Algorithm XPathToReg is given in Fig. 5. It computes EQ = x2r(Q, r) as follows. It first

enumerates the list L of sub-queries in Q and the list N of element types in D, as well as

initializes x2r(p,A) to the special query ∅ and reach(p,A) to empty set for each p ∈ Q and

A ∈ N (lines 1–6). Then, for each sub-query p in L in the topological order and each element

type A in N , it computes the local translation x2r(p,A) (lines 7–56), bottom-up starting from

the inner-most sub-query of Q. To do so, it first computes x2r(pi, Bj) for each (immediate)

sub-query pi of p at each possible dtd node Bj under A (i.e., Bj in reach (p,A)); then, it

combines these x2r(pi, Bj)’s to get x2r(p,A). The details of this combination are determined

based on the formation of p from its immediate sub-queries pi, if any (cases 1-12). In particular,

in the case p = ǫ//p1 (case 5), it ranges over the children C of A to compute rec(C,) instead of

rec(A,) since the context node A is already in the latter, where ‘ ’ denotes an arbitrary type.

We also single out a special case, namely, when p1 is of the form B/p′, and handle it by using

rec(C,B)/x2r(p′, B). Note that when p is a qualifier [q] (cases 7–12), it may evaluate [q] to a

truth value (ǫ for true and ∅ for false) in certain cases based on the structure of the dtd D,

and thus optimize the query evaluation. At the end of the iteration EQ = x2r(Q, r) is obtained,

optimized by removing ∅, and returned as the output of the algorithm (lines 57–58).

Example 4.1: Recall the xpath query Q2 from Example 2.2. Observe that the algorithm of [21]

cannot handle this query over the dept dtd of Fig. 1 (a). In contrast, XPathToReg translates

Q2 to the regular xpath query

EQ2
= dept/course[Ecourse course/prereq/course/cno=”cs66” ∧

¬ Ecourse project ∧ ¬ takenBy/student/Equalified course/cno=”cs66”.

where the following is computed by Tarjan’s algorithm:

Ecourse course = rec (course, course) = course/E∗

1 ∪ E+
2 /E∗

1 ,

Ecourse project = rec (course, project)

= (course/E∗

1 ∪ E+
2 /course/E∗

1)/project,

13

Equalified course = rec (qualified, course)

= qualified/course/E∗

1 ∪ (qualified/E2)
+/course/E∗

1 ,

E1 = prereq/course ∪ takenBy/student/qualified/course

E2 = course/E∗

1/project/required

The algorithm to be given in the next section can then translate EQ2
to equivalent relational

queries. 2

Algorithm XPathToReg takes at most O(|Q|∗|D|3) time, since each step in the iteration takes

at most O(|D|) time except that case 5 may take O(|D|2) time, the size of the list L is linear

in the size of Q, and variables rec(A,B) are precomputed as soon as the dtd D is available.

Furthermore, taken together with the complexity of Tarjan’s algorithm [35] the size of the output

EQ is at most O(|Q| ∗ |D|4log|D|). One can verify the following.

Theorem 4.1: Each xpath query Q over a dtd D can be rewritten to an equivalent regular

xpath expression EQ over D of size O(|Q| ∗ |D|4log|D|). 2

Observe the following. First, regular xpath queries capture dtd recursion and xpath

recursion in a uniform framework by means of the general Kleene closure E∗. Second, during the

translation, algorithm XPathToReg conducts optimization leveraging the structure of the dtd.

Third, Kleene closure is only introduced when computing rec(A,B); thus there are no qualifiers

within a Kleene closure E∗ in the output regular query. Fourth, both |Q| and |D| are far smaller

than the data (xml tree) size in practice.

4.2 Optimization via Cycle Contraction

A major criterion for computing a regular xpath query EQ is that the sql query Q′ translated

from EQ should be efficient. Among the relational operators in Q′, lfp is perhaps the most

costly. Thus, one wants EQ to contain as few Kleene closures as possible. In other words, among

possibly many regular expressions representing all the paths from A to B in a graph, we want

to choose one for rec(A,B) with a minimal number of E∗’s. It is clear from Example 4.1 that

the regular expressions rec(A,B) computed by the algorithm of [35] may contain excessively

many E∗’s. Indeed, the focus of Tarjan’s algorithm is the efficiency for finding any regular

expression representing paths between two nodes, rather than the one with the least number of

E∗’s. Furthermore, it is not realistic to expect an efficient algorithm to find rec(A,B) with the

least number of E∗’s: this problem is PSPACE-hard (by reduction from the equivalence problem

for regular expressions).

In response to this, we propose a new algorithm for computing rec(A,B), referred to as Cycle-

C, which is a heuristic for minimizing the number of Kleene closures in a resulting regular xpath

query. As will be seen in Section 6, Cycle-C outperforms the algorithm of [35] in many cases.

Algorithm Cycle-C is based on the idea of graph contraction: given a dtd graph GD, it

repeatedly contracts simple cycles of GD into nodes and thus reduces the interaction between

these cycles in rec(A,B). In a nutshell, it first enumerates all distinct simple paths (i.e., paths

without repeating labels) between A and B in GD, referred to as key label paths and denoted

by AB-paths. Assume that all the AB-paths are L1, . . . , Ln, where each Li is of the form

A1 → . . . → Ak, with A = A1 and B = Ak. It encodes Li with a regular expression Ei,

which has an initial value A1/ . . . /Ak. Then, for each simple cycle Cj “connected” to Ai, the

14

c

b

a

f

(a) 3 cycles
c

b

a

f

(b) 4 cycles

e

b

a
(c) 2 cycles

Figure 6: rec(a, c)

algorithm encodes Cj with a simple regular expression E∗

Cj
, where ECj

represents the simple

path of Cj. It contracts Cj to the node Ai and replaces Ai in Ei with Ai/E
∗

Cj
; as a result of the

contraction, cycles that were not directly connected to Li may become directly connected to Li.

The algorithm repeats this process until all the cycles connected to Li, directly or indirectly,

have been incorporated into Ei. One can verify that rec(A,B) is indeed (E1 ∪ . . . ∪ En). Note

that all simple cycles of a directed graph can be efficiently identified [36].

Below we discuss various cases dealt with by the Cycle-C algorithm, starting from simple

ones.

Case-1: A dtd graph GD has a single AB-path L = A1 → . . .→ Ak and a single simple cycle

C connected to L.

First, assume that Ai ∈ GD is the only node shared by L and C = Ai → A′

1 → . . .→ A′

m →

Ai. Then, the regular expression E = Ea/Eγ/Eb suffices to capture all the paths between A

and B, where Ea = A1/ . . . /Ai, Eb = Ai+1/ . . . /Ak, and Eγ is E∗

C with EC = A′

1/ . . . /A′

m/Ai.

Second, suppose that L and C share more than one node, say, Ai and Aj. It is obvious that

we only need to incorporate C into E at one of those nodes, either at Ai or Aj , because Eγ has

already covered the connections between Ai and Aj . Thus E is the same as the one given above.

This property allows us to find Eγ using an arbitrary node Ai shared by multiple simple cycles.

Case-2. There exist a single AB-path L and multiple simple cycles C1, · · · , Cn, while all these

cycles share a single node Ai on L. Here the regular expression E is a mild extension of case-1:

E is Ea/Eγ/Eb while Eγ = (EC1
∪ EC2

∪ · · · ∪ ECn)∗, and ECi
codes Ci as above.

Example 4.2: Such a case was given in Example 3.2. Consider Rd//Rp over the dtd graph

Fig. 1 (b). The graph has 3 simple cycles, Rc → Rc, Rc → Rs → Rc and Rc → Rp → Rc.

The only AB-path is L = Rd → Rc → Rp (i.e, dept → course → project). Here, Rc is

the node shared by all the three cycles and L. The resulting regular xpath query is then

Rd/Rc/((Rc ∪Rs/Rc ∪Rp/Rc)
∗)/Rp. 2

Case-3. There exist a single AB-path L and multiple simple cycles C1, · · · , Cn, but not all

the cycles share a node on L. For example, Fig. 6 (a) shows a dtd graph with 3 simple cycles

C1 = a→ b→ a, C2 = c→ f → c, and C3 = a→ c→ f → b→ a. Consider rec(a, c), for which

the only AB-path is L = a→ c. While C1 and C3 share a on L, and C2 and C3 share c, but not

all the 3 cycles share a or c as a common node. Given these Cycle-C first generates E = a/c.

Then, it contracts C1, C3 and replaces a with a regular expression a/Eγ1
, capturing paths from

a to a via C1 and C3. It then contracts C2 and C3 by replacing c with c/Eγ2
, covering paths

from c to c via C2 and C3. The final result is E = a/Eγ1
/c/Eγ2

. Observe the following. First,

Eγ2
covers all possible paths that traverse Eγ1

since Eγ2
includes Eγ1

by replacing a with Eγ1
,

and E covers all possible paths between a and c. Second, the processing order of the cycles is

15

Algorithm Cycle-C(GD, A, B)

Input: a DTD graph GD and two nodes A, B in GD.
output: rec(A,B) in GD.

1. find all distinctive AB-paths, L1, L2, · · · , Lk, between A and B;
2. for each Li do
3. Gi := the subgraph including all simple cycles that

are connected Li directly and indirectly;

4. for each Li = A1 → . . .→ Ak do
5. Ei := A1/ . . . /Ak;
6. Ci := a list of all simple cycles in Gi found by the algorithm of [36]

and sorted in topological order based on their distance to Li

from the farthest to those directly connected to Li;

7. for each cycle C in Ci in the order of Ci do
8. if C does not directly connect to Li

9. then find node Ax on C with the shortest distance to Li;
10. Gx := the subgraph consisting of C;
11. EC := Cycle-C(Gx, Ax, Ax); /* contract C to Ax */
12. replace Ax and C with E∗

C in Gi;

13. identify the nodes A′

1, · · · , A
′

m shared by simple cycles with Li;
14. for each A′

i shared by cycles C1, . . . , Cl

15. EAj
:= a regular expression representing C1, . . . , Cl,

computed based on cases 1–3 described earlier;
16. replace Aj in Ei with Aj/E

∗

A′

j
;

17. return E = E1 ∪ · · · ∪ En;

Figure 7: Algorithm for computing rec(A,B)

not sensitive. We can also first process C2 and C3 and obtain Eγ2
, and then let Eγ1

include Eγ2

by replacing c with Eγ2
.

Case-4. There are multiple AB-paths. Figure 6 (b) shows a dtd graph with 4 simple cycles

C1 = a → b → a, C2 = c → f → c, C3 = a→ c → f → b → a, and C4 = b → f → b. Consider

rec(a, c), which has two AB-paths: L1 = a → c and L2 = a → b → f → c. On L1 there are

three simple cycles: C1, C2 and C3, and on L2 there are C1, C2 and C4. Here the regular xpath

query is EL1
∪ EL2

, where each ELi
is generated based on the single AB-path cases above.

Case-5. There are a single AB-path L and multiple simple cycles, but not all cycles are directly

connected to L. For example, Fig. 6 (c) shows a dtd graph with 2 simple cycles C1 = a→ b→ a

and C2 = b → e → b. Consider rec(a, a), for which the AB-path is a. Note that C2 does not

directly connect to a, but it is on C1. It can be processed as follows. (1) We generate a regular

expression E = a. (2) We contract C2, generate EC2
to capture C2 and replace b in C1 with

b/EC2
. (3) We contract C1 and replace a with a/EC1

, which includes EC2
.

Putting these cases together, we present the Cycle-C algorithm in Fig. 7. It takes as input a

dtd graph GD and nodes A and B in GD, and returns a regular expression rec(A,B) as output.

More specifically, it first identifies all the AB-paths L1, . . . , Ln in GD and for each Li, finds

the subgraph Gi that consists of Li along with all the simple cycles that are connected to Li

16

a

b

e

dc

f

Figure 8: A divide-and-conquer example

directly or indirectly (lines 1–2). For each Li, it finds all the simple cycles Ci using the algorithm

of [36]. It then topologically sorts these cycles based on their shortest instance to any node on

Li (line 6). For each of these cycles starting from the one with the longest distance to Li, it

contracts the cycle based on case-5 (lines 4–12). It identifies all Aj nodes shared by some simple

cycles (line 13) with Li, and contracts those simple cycles to a single node based on cases 1–3

(line 14-16). Finally, it produces and returns the resulting regular expression based on case 4

(line 17). One can verify the following. Theorem 4.2: Given a dtd graph of GD and nodes

A and B in GD, Cycle-C correctly computes a regular expression rec(A,B) that captures all and

only the paths between A and B in GD. 2

Example 4.3: Recall the regular xpath query EQ2
from Example 4.1, which is generated from

the xpath query Q2 by algorithm XPathToReg. Using Cycle-C, we get

Ecourse course = course/Ecc,

Ecourse project = course/Ecc/project,

Equalified course = qualified/course/Ecc,

Ecc = (E1∪ project/required/course)∗,

E1 is the same as the one given in Example 4.1.

These are notably simpler than their counterparts in Example 4.1 computed by Tarjan’s

algorithm. 2

It is worth mentioning that while the number of the lfp operators in the produced sql query

Q′ is not the only factor for the performance of Q′, it is among the most important ones. The

Cycle-C algorithm above shows only the basic ideas. It can be improved to contract a group of

simple cycles that do not share a node with a AB-path, instead one by one. Furthermore, in

order to reduce the computing cost of Cycle-C when dealing with large dtd graphs, a divide-

and-conquer approach can be adopted. For example, consider the dtd graph shown in Fig. 8,

which includes three subgraphs (strongly connected components), as indicated by dotted circles.

Let G1, G2 and G3 denote the left, middle and the right subgraphs, respectively. Consider

rec(a, d), which yields two AB-path a→ c→ d and a→ b→ e→ d. We divide the computation

into computing Ea a = rec(a, a) in G1, Ea e = rec(a, e) in G1, Ec c = rec(c, c) in G2, and

Ed d = rec(d, d) in G3, each is computed with a separate smaller subgraph. Then, rec(a, d) can

be obtained by putting them together: Ea a/Ec c/Ed d∪Ea e/Ed d. Hence, instead of computing

rec(a, d) with a large dtd graph, we can achieve the same by calling rec() three times, each

dealing with a much smaller sub-graph.

17

5 From Regular XPath Expressions to SQL

In this section, we present an algorithm for rewriting regular xpath expressions into sql queries

with the simple lfp operator.

5.1 Translation Algorithm

Consider a mapping τ : D → R, where D is a dtd and R is a relational schema, such that its

associated data mapping τd shreds xml trees of D into databases of R. Given a regular xpath

expression EQ over D, we compute a sequence Q′ of equivalent relational queries with the simple

lfp operator Φ such that for any xml tree T of D, EQ(T) = Q′(τd(T)). We write Q′ in the

relational algebra (RA), which can be easily coded in sql.

A subtle issue is that the lfp operator Φ supports (E)+ but not (E)∗ (where (E)∗ means

repeating E zero or more times, while (E)+ indicates repeating E at least once). Thus (E)∗

needs to be converted to ǫ ∪ (E)+. To simplify the handling of ǫ, we assume a relation Rid

consisting of tuples (v, v, v.val) for all nodes (IDs) v in the input xml tree except the root r.

Note that Rid is the identity relation for join operation: R 1 Rid = Rid 1 R = R for any

relation R. With this we translate (E)∗ to Φ(R) ∪ Rid, where R codes E and Rid tuples will

be eliminated in a later stage. We rewrite ǫ into Rid just to simplify the presentation of our

algorithm; a more efficient translation is adopted in our implementation.

We now give our translation algorithm, RegToSQL, in Fig. 9. The algorithm takes a regular

xpath expression EQ over the dtd D as input, and returns an equivalent sequence Q′ of RA

queries with the lfp operator Φ as output. The algorithm is based on dynamic programming:

for each sub-expression e of EQ, it computes r2s(e), which is the RA query translation of e; it

then associates r2s(e) with a temporary table Re (which is used in later queries) and increments

the list Q′ with R ← r2s(e). More specifically, r2s(e) is computed from r2s(ei) where ei’s are

its immediate sub-queries. Thus upon the completion of the processing one will get the list

Q′ equivalent to EQ. To do this, the algorithm first finds the list L of all sub-expressions of

EQ and topologically sorts them in ascending order (line 1). Then, for each sub-query e in L,

it computes r2s(e) (lines 3–23), bottom-up starting from the inner-most sub-query of EQ, and

based on the structure of e (cases 1-11). In a nutshell, it handles different cases of e as follows.

(1) It rewrites a label A to the corresponding relation RA (case 2).

(2) Concatenation is coded with projection Π and join 1 (case 3).

(3) Union and disjunction are encoded with union ∪ in relational algebra (cases 4 and 10).

(4) Kleene closure (E)∗ is converted to the lfp operator Φ (case 5).

(5) Conjunction is coded with set intersection implemented with union ∪ and set difference \ in

relational algebra (case 9).

(6) An expression with qualifier e = e1[q] is converted to a RA query r2s(e) that returns only

those r2s(e1) tuples t1 for which there exists a r2s(q) tuple t2 with t1.T = t2.F , i.e., when the

qualifier q is satisfied at the node represented by t1.T (case 6).

(7) On the other hand, it rewrites e1[¬q] to a RA query r2s(e) that returns only those r2s(e1)

tuples t1 for which there exists no r2s(q) tuple t2 such that t1.T = t2.F , i.e., when the qualifier

q is not satisfied at the node t1.T (and hence [¬q] is satisfied at t1.T ; case 11); this captures

18

Algorithm RegToSQL

Input: a regular xpath expression EQ over a dtd D.
Output: an equivalent list Q′ of RA queries over R, where τ : D → R.

1. compute the ascending list L of sub-expressions in E;
2. Q′ := empty list [];

3. for each e in the order of L do
4. case e of
5. (1) ǫ: r2s(e) := Rid;

6. (2) A: r2s(e) := RA;

7. (3) e1/e2: let R1 = r2s(e1), R2 = r2s(e2);
8. r2s(e) := ΠR1.F,R2.T,R2.V (R1 1R1.T=R2.F R2);

9. (4) e1 ∪ e2: let R1 = r2s(e1), R2 = r2s(e2);
10. r2s(e) := R1 ∪R2;

11. (5) E∗: let R = r2s(e);
12. r2s(e) := Φ(R) ∪Rid;

13. (6) e1[q]: let R1 = r2s(e1), Rq = r2s(q);
14. r2s(e) := ΠR1.F,R1.T,R2.V (R1 1R1.T=Rq.F Rq);

/* returns R1 tuples that connect with R2 tuples */

15. (7) [e1]: r2s(e) := r2s(e1);

16. (8) e1[text() = c]: let R1 = r2s(e1);
17. r2s(e) := σR1.V =cR1;

/* select tuples t of R1 with t.V = c */

18. (9) [q1 ∧ q2]: let R1 = r2s(q1); R2 = r2s(q2);
19. r2s(e) := R1 ∪R2 \ ((R1 \R2) ∪ (R2 \R1));

/* r2s(e) = R1 ∩R2; */

20. (10) [q1 ∨ q2]: let R1 = r2s(q1); R2 = r2s(q2);
21. r2s(e) := R1 ∪R2;

22. (11) e1[¬q]: let Rq = r2s(q), R1 = r2s(e1);
23. r2s(e) := R1\ ΠR1.F,R1.T,R1.V

(R1 1R1.T=Rq.F Rq);
/* only R1 tuples not connecting to any Rq tuple */

24. Q′ := (Re ← r2s(e)) :: Q′; /* add r2s(e) to Q′ */

25. r2s(EQ) := σF=′ ′r2s(EQ); /* select nodes reachable from root */
26. Q′ := r2s(EQ) :: Q′;
27. optimize Q′ by extracting common sub-queries;
28. return Q′;

Figure 9: Rewriting algorithm from regular XPath to SQL

precisely the semantics of negation in xpath (recall our assumptions about [¬q] and [text() = c]

from Section 2).

(8) It converts [e1] to r2s(e1) when e1 is a regular xpath expression (case 7).

(9) It rewrites e = e1[text() = c] in terms of selection σ that returns all tuples of r2s(e1) that

have the text value c.

19

F T

d1 c1

c1 c2

c2 c3

p1 c4

s2 c5

c1 c5

c2 c4

(a) R

F T

c1 c2

c1 c3

c1 c4

c1 c5

· · · · · ·

(b) Rγ

F T

d1 p1

d1 p2

(c) Rf

Table 3: Intermediate and final results of dept//project.

In each of the cases above, the list Q′ is incremented by adding Re ← r2s(e) to Q′ as the

head of Q′ (line 24). Finally, after the iteration it yields σF=′ ′r2s(EQ) (line 25), which selects

only those nodes reachable from the root of the xml tree, removing unreachable nodes including

those introduced by Rid. It also optimizes the sequence Q′ of RA queries by eliminating empty

set and extracting common sub-queries (details omitted from Fig. 9), and returns the cleaned

Q′ (lines 27–28).

One can verify that Q′, in its reverse order, is a sequence of RA queries equivalent to the

input regular xpath expression EQ.

Example 5.1: Consider the xpath query Q1 = dept//project over the dept dtd of Fig. 1 (a).

Over the simplified dtd is Fig. 1 (b), Q1 becomes Rd//Rp. Its equivalent RA translation Q′

1 has

been given in Example 3.2, which includes a single lfp operation Rγ = Φ(R)∪ΠT,T (Rc), where

R = Rcc ∪ Rcsc ∪ Rcpc. When evaluated over the relational database of Fig. 1 (which encodes

an xml tree of the dept dtd), Q′

1 produces R, Rγ , and the final result as shown in Table 3 (a),

(b) and (c), respectively.

As another example, recall the xpath query Q2 from Example 2.2, and its regular xpath

translation EQ2
from Example 4.1, which contains Ecourse course, Ecourse project and Equalified course

generated by Cycle-C and given at the end of Section 4. Given EQ2
, the RegToSQL algorithm

generates the RA translation below:

Ecc : Rγ with lfp, the same as the one in Example 3.2.

Ecourse course : Rcc ← Rc 1 Rγ ,

Ecourse project : Rcp ← Rc 1 Rγ 1 Rp,

Equalified course : Rqc ← Rcc,

Ecourse course/prereq/course/cno = ”cs66”

: R1 ← σcno=”cs66”(Rcc 1 Rc)

takenBy/student/Equalified course/cno = ”cs66”

: R2 ← σcno=”cs66”(Rs 1 Rqc)

Note that Q2 is of the form (with a complex qualifier) dept/course[q1∧¬q2∧¬q3], which is handled

by our algorithms by treating it as Q1
2 = dept/course[q1], Q2

2 = Q1
2[¬q2] and Q2 = Q2

2[¬q3].

Therefore, Q1
2 ← Rd 1 Rc 1 R1, Q2

2 ← Q1
2 \ (Q

1
2 1 Rcp), and EQ2

becomes Q2
2 \ (Q

2
2 1 R2) where

projections are omitted. In contrast, the algorithm of [21] cannot translate xpath queries of

this form to relational queries. 2

Algorithm RegToSQL takes at most O(|EQ|) time. Taken together with the complexity of

algorithm XPathToReg given in Section 4, one can verify the following:

Theorem 5.1: Each xpath query Q over a dtd D can be rewritten to an equivalent sequence

of sql queries (with the lfp operator) of total size O(|Q| ∗ |D|4log|D|). 2

20

Observe the following. First, algorithm RegToSQL shows that the simple lfp operator Φ(R)

suffices to express xpath queries over recursive dtds; thus there is no need for the advanced

sql’99 recursion operator. Second, the total size of the produced sql queries is bounded by a

low polynomial of the sizes of the input xpath query Q and the dtd D. Finally, the algorithms

XPathToReg and RegToSQL can be easily combined into one; we present them separately to

focus on their different functionality.

5.2 Pushing Selections into the lfp Operator

Algorithms XPathToReg and RegToSQL show that sql with the simple lfp operator is powerful

enough to answer xpath queries over recursive dtds. While certain optimizations are already

conducted during the translation, other techniques, e.g., sophiscated methods for pushing

selections/projections into the lfp operator [1, 3, 5]. can be incorporated into our translation

algorithms to further optimize generated relational queries.

We next show how to push selections into lfp. Consider an xpath query Q3 = Rd[id =

a]/Rc//Rp. To simplify the discussion, assume that our algorithms rewrite Q3 into R1 ← Qd

and R2 ← lfp(R0), where Qd and lfp(R0) compute Rd[id = a] and Rc//Rp, respectively. While

R1 1 R2 yields the right answer, we can improve the performance by pushing the selection into

the lfp computation such that it only traverses “paths” starting from the Rc children of those

Rd nodes with id = a. Recall from Eq. (2) that one can specify a predicate C on the join between

RΦ and R0 in lfp, where R0 is the input relation and RΦ is the relation being computed by the

lfp (Section 3; supported by connectby of Oracle and with...recursion of IBM DB2). Here C can

be given as RΦ.F ∈ πT (R1) ∧ RΦ.T = R0.F (‘∈’ denotes in in sql), i.e., besides the equijoin

RΦ.T = R0.F we want the F (from) attribute of RΦ to match a T (to) attribute of R1. Then,

each iteration of the lfp only adds tuples (f, t), where f is a child of a node in πT (R1). Similarly,

the selection in Rd//Rc/Rp[id=c] can be pushed into lfp(R0) for rec(Rd, Rc). Indeed, let R1 be

the relation found for Rp[id=c], and the lfp join condition be: RΦ.F = R0.T ∧RΦ.T ∈ πF (R1).

Then the lfp only returns tuples of the form (f, t), where t is the parent of a node in πF (R1).

As will be seen in Section 6, this optimization is effective.

5.3 Discussions

Query Optimization: Observe that in our generated relational queries, all joins and unions

are outside of the lfp operator, as opposed to embedding joins/unions in the blackbox of

the operator with...recursive. As a result, one can capitalize on rdbms to optimize those

joins/unions. Indeed, making use of relational optimizers is one of the reasons for one to want

to push the work to rdbms before xml query optimizers become as sophisticated as their

rdbms counterparts. Furthermore, our translation framework makes it easy to accommodate

all existing techniques in commercial rdbms [27, 16]; in particular, multi-query optimization

techniques (e.g., [30]) can be easily incorporated into our framework to optimize a sequence of

sql queries produced by our algorithms.

XML Reconstruction: It is worth mentioning that our rewriting algorithms can be easily

extended such that they not only find ancestor/descendant pairs, but also preserve the path

information between each pair. A simple way to do so is to use an additional attribute P in lfp

21

*

**
a b c d

*

*

(a) Cross

*gene dna clone locus**

*

*

*

*
(b) BIOML

*

*
*

* * *

*

* *

*

*

Note

Obje

SourData

Even

(c) GedML

Figure 10: dtd Graphs

Φ() such that the P attribute keeps track of the path information by concatenating edges when

tuples are joined. Both DB2 and Oracle support such a string concatenation operator.

6 A Performance Study

To verify the effectiveness of our rewriting and optimization algorithms, we have conducted a

performance study on evaluating xpath queries using an rdbms with three approaches:

• the SQLGen-R algorithm proposed in [21],

• our rewriting algorithms by using Tarjan’s method (referred to as Cycle-E as it is based on

cycle expansion) to find rec(A,B), i.e., paths from node A to B in a dtd graph,

• our rewriting algorithms by using Cycle-C of Fig. 7 to compute rec(A,B), referred to as

Cycle-C.

We experimented with these algorithms using a simple yet representative dtd and two complex

dtds from real world. The simple dtd is depicted in Fig. 10 (a) (2 cross cycles). The two real-

life dtds are (1) a 4-cycle dtd extracted from BIOML (BIOpolymer Markup Language [6]),

as shown in Fig. 10 (b); and (2) a 9-cycle dtd extracted from GedML (Genealogy Markup

Language [15]), given in Fig. 10 (c).

While testing several different types of xpath queries, our performance study focuses on

the evaluation of // because // is the only operator in xpath queries that, in the presence of

recursive dtds, leads to Kleene closures and therefore lfp in rdbms, and is a dominant factor

of xpath query evaluation. Two considerations on query evaluation are given below. First, as

shown in our rewriting algorithms, // is translated into a sequence of projection, join and union,

along with lfp. The evaluation of this sequence should be isolated from other operators that do

not contribute to the evaluation of //. Second, the non-recursive operators in xpath queries are

translated into selection, projection, join and union that the existing relational query processing

techniques can support, and is beyond the scope of this evaluation.

Our experimental results demonstrate that our rewriting algorithms with Cycle-C outperform

the other two in most cases.

Implementation. We have implemented a prototype system supporting SQLGen-R, Cycle-E

and Cycle-C, using Visual C++, denoted by R, E and C, respectively, in all the figures. SQLGen-

R rewrites a query with the with...recursive operator, while Cycle-E and Cycle-C translate a

query to a sequence of sql queries. We run a batch to execute these rewritten sql queries. In

this study, we only implemented some basic optimizations, e.g., common sub-expressions were

executed only once. We conducted experiments using IBM DB2 (UDB 7) on a single 2GHz CPU

with 1GB main memory. We did not compare SQLGen-R with ours on Oracle, because Oracle

does not support the sql’99 recursion. The queries output ancestor, descendant pairs.

22

Testing Data: Testing data were generated using IBM xml Generator (http://www.

alphaworks.ibm.com). The input to the IBM xml Generator is a dtd file and a set of

parameters. We mainly control two parameters, XL and XR, in order to study the impacts

of the shape of xml trees. Here XL is the maximum number of levels in the resulting xml

tree. If a tree goes beyond XL levels, it will add none of the optional elements (denoted by

* or ? in the dtd) and only one of each of the required elements (denoted by + or with no

option); XR controls the maximum number of occurrences of child elements in the presence of

the ∗ or + option. In other words, the number of children of each element of a type defined

with this option is a random number between 0 and XR. Together XL and XR determine the

shape of an xml tree: the larger the XL value, the deeper the generated xml tree; and the

larger the XR value, the wider the xml tree. The default values used in our testing for XL

and XR are 4 and 12, respectively. The default number of elements in a generated xml tree was

120,000. There is a need to control the sizes of xml trees to be the same in different settings

for comparison purposes, and thus excessively large xml trees generated were trimmed. For the

other parameters of the Generator, we used their default settings.

Relational Database. The generated xml data was mapped to a relational database using

the shared-inlining technique [34]. Indexes were generated for all possible joined attributes.

Query Evaluation. (1) We tested four xpath queries: a query with //, a twig join query, a

query with ¬ and //, and a query with ¬, ∨, ∧ and //. The testing was done using different

databases (fixing the database size while varying the relation sizes). (2) We tested the scalability

of our generated sql queries w.r.t. different database sizes using a query containing //. (1) and

(2) were conducted with the simple cross-cycle dtd graph. (3) We tested several xpath queries

with different dtds, which are subgraphs of the real-life BIOML dtd, using the same database.

The main difference between (1) and (3) is that the former tested the same queries with different

databases, and the latter tested different queries with the same database. (4) We tested a simple

// query on the complex real-life GedML dtd on several large databases.

6.1 Exp-1: Evaluation of Selective Queries

In this study, over the simple cross-cycle dtd (Fig. 10 (a)), we tested the following four xpath

queries:

• Qa = a/b//c/d (with //),

• Qb = a[//c]//d (a twig join query),

• Qc = a[¬ //c] (with ¬ and //), and

• Qd = a[¬ //c ∨ (b ∧ //d)] (with ¬, ∨, ∧ and //).

The XPathToReg algorithm translates these xpath queries into four xpath regular expressions,

namely, Q′

a = a/Eb c/d, Q′

b = a[Ea b/c]/Ea c/d, Q′

c = a[¬Ea b/c], and Q′

d = a[¬Ea b/c ∨ (b ∧

Ea c/d)], respectively, while Cycle-E generates the following:

Eb c = rec(b, c) = (Ebb ∪ (Ebb/c/a/(Ebb/c/a)∗/Ebb))/c

Ea b = rec(a, b) = a/(Ebb/c/a)∗/Ebb

Ea c = rec(a, c) = a/(Ebb/c/a)∗/Ebb/c

Ebb = b/(c/d/b)∗

23

0

100

200

300

aL aM aS dL dM dS

T
im

e

(
S

e
c
)

Push-Selection
Seletion

Figure 11: Pushing Selection (XR = 8 and XL = 12)

In contrast, Cycle-C generates the following:

Eb c = rec(b, c) = b/(c/a/b ∪ c/d/b)∗/c,

Ea b = rec(a, b) = a/b/(c/a/b ∪ c/d/b)∗,

Ea c = rec(a, c) = a/b/(c/a/b ∪ c/d/b)∗/c.

For each rec(A,B), Cycle-C uses one lfp, but Cycle-E uses two lfp’s. Since the last three xpath

queries cannot be handled by SQLGen-R, we tested SQLGen-R by generating a with...recursive

query for each rec(A,B) in our translation framework. Since the cross-cycle dtd graph consists

of 4 nodes 5 edges, SQLGen-R produced a with...recursive expression using 5 joins and 5 unions,

which are computed in each iteration.

We used an xml tree with a fixed size of 120,000 elements. The same queries were evaluated

over different shapes of xml trees controlled by the height of the tree (XL) and the width of

tree (XR). Since an xml tree with different heights and/or widths results in different sizes of

relations in a database, even though the database size is the same, the same translated sql

query may end up having different query-processing costs. We report elapsed time (seconds)

for each query in Fig. 12. For a single query, one figure shows the elapsed time while varying

XL from 8 to 20 with X4 = 4, whereas the other figure shows the elapsed time while varying

XR from 4 to 10 with XL = 12. In all the cases, Cycle-C noticeably outperforms SQLGen-R and

Cycle-E.

6.2 Exp-2: Pushing Selections into lfp

We tested two xpath queries with selection conditions: Qe = a[id = Ai]/b//c/d, Qf =

a/b//c/d[id = Di]. For each query we generated two sql queries, one with selections pushed into

lfp and the other without. We evaluated these queries using datasets of the dtd of Fig. 10 (a),

fixing the size of the datasets while varying the size of the set selected by the qualifiers of ai

and di. Figure 11 (a) shows the result, in which (1) aL, aM and aS indicate that an ai element

has large/medium/small number of d descendants; and (2) dL, dM and dS indicate that a di

element has large/medium/small number of a ancestors, respectively. It shows that performance

improvement by pushing selections into the lfp operator is significant.

6.3 Exp-2: Scalability Test

Figure 13 demonstrates the scalability of our algorithms by increasing the dataset sizes, for an

xpath query a//d over the cross-cycle dtd (Fig. 10 (a)). The xml dataset size increases to

960,000 elements from 120,000 elements. We set XL = 16, because the default XL = 12 is

not large enough for the xml generator to generate such large datasets. We find that Cycle-C

outperforms both SQLGen-R and Cycle-E noticeably, and SQLGen-R outperforms Cycle-E. When

the dataset size is 960,000, the costs of Cycle-E and SQLGen-R are 2.1 times and 1.58 times of the

24

cost of Cycle-C, respectively. This shows that when dataset is large, our optimization technique

(Cycle-C) is effective enough to outperform with...recursive, because it can reduce the number

of lfp operators and unnecessary joins and unions. Furthermore, Cycle-C is linearly scalable.

6.4 Exp-3: Complex Cycles (Extracted from Real-Life DTDs)

We next show the results of testing xpath queries on the extracted 4-cycle BIOML dtd and

the 9-cycle GedML dtd.

First, we tested xpath queries over the extracted dtd graphs from BIOML. We considered

four subgraphs of the BIOML dtd of Fig. 10 (b) in order to demonstrate the impact of different

dtds on the translated sql queries. These subgraphs are shown in Fig. 14. Similar xpath

queries were tested in the presence of these extracted dtd graphs, and are summarized in

Table 4.

All these xpath queries were run on the same dataset which was generated using the largest

4-cycle dtd graph extracted from BIOML (Fig. 10 (b)) with XR = 6 and XL = 16. Unlike Exp-

1, we did not trim the xml trees generated by the IBM xml Generator. The generated dataset

consists of 1,990,858 elements, which is 16 times larger than the dataset (120,000 elements) used

in Exp-1. The sizes of relations for gene, dna, clone and locus are 354,289, 703,249, 697,060 and

236,260, respectively.

We show the query processing results in Fig. 15. Except case 2a, Cycle-E outperforms SQLGen-

R. We find that Cycle-C outperforms SQLGen-R and Cycle-E in all the cases. In case 4a, for

example, SQLGen-R needs to use 7 joins and 7 unions in each iteration; Cycle-E needs to process

6 join, 2 lfp and 3 union operators; and Cycle-C uses 5 join, 1 lfp and 4 union operators.

Note that because the Cycle-E execution sequence is determined by Tarjan’s algorithm [35], it

is inflexible to change the order of execution. Cycle-C significantly outperforms SQLGen-R and

Cycle-E because less number of join and lfp are used, while it uses more union operators than

others. The cost of union is comparatively small, if one relation involved in the union operator

is indexed.

Second, we tested an xpath query, Even//Data, over the 9-cycle dtd graph extracted from

GedML (Fig. 10 (c)). Here SQLGen-R uses 11 joins and 11 unions in each iteration, because this

dtd consists of 11 edges. Cycle-E generates a sequence of 23 join, 4 lfp and 16 union operators.

Cycle-C uses 10 join, 1 lfp and 10 union operators, because there are three key label paths:

Even → Sour → Data, Even → Note → Sour → Data, and Even → Obje → Note → Sour →

Data. Although all the simple cycles on every key label path shares a common node Sour on

which cycle contraction is processed, the number of key label paths and the lengths of key label

paths all contribute to the processing cost.

For this test, we generated large datasets using the IBM xml Generator without trimming.

Figure 16 (a) shows the results while varying XL with XR = 6. The dataset sizes are 286,845

(XL = 13), 84,5045 (XL = 14), 1,019,798 (XL = 15), and 5,320,417 (XL = 16). Figure 16 (b)

shows the results while varying XR with XL = 16. The dataset sizes are 13,992 (XR = 5),

226,663 (XR = 6), 119,999 (XR = 7), and 5,041,437 (XR = 8). The largest datasets are 2 times

larger than that used for the BIOML test. All the three algorithms performed in a similar way.

Cycle-C marginally outperforms Cycle-E and SQLGen-R for different XL values in Fig. 16 (a).

When the width parameter XR is small, SQLGen-R performs better than Cycle-E and Cycle-

25

0

700

1400

2100

2800

8 12 16 20

T
im

e

(
S

e
c
)

R
E
C

(a) Qa: Vary XL

0

400

800

1200

4 6 8 10

T
im

e

(
S

e
c
)

R
E
C

(b) Qa: Vary XR

0

800

1600

2400

3200

8 12 16 20

T
im

e

(
S

e
c
)

R
E
C

(c) Qb: Vary XL

0

400

800

1200

1600

4 6 8 10

T
im

e

(
S

e
c
)

R
E
C

(d) Qb: Vary XR

0

400

800

1200

1600

2000

8 12 16 20

T
im

e

(
S

e
c
)

R
E
C

(e) Qc: Vary XL

0

200

400

600

800

4 6 8 10

T
im

e

(
S

e
c
)

R
E
C

(f) Qc: Vary XR

0

800

1600

2400

3200

4000

8 12 16 20

T
im

e

(
S

e
c
)

R
E
C

(g) Qd: Vary XL

0

400

800

1200

1600

4 6 8 10

T
im

e

(
S

e
c
)

R
E
C

(h) Qd: Vary XR

Figure 12: Processing time for cross cycles (Fig. 10 (a)).

0

400

800

1200

1600

120k 240k 480k 960k

T
im

e
 (

S
e
c
)

R
E
C

Figure 13: Scalability Test (XR = 4 and XL = 16)

gene dna clone locus

(a)

gene dna clone locus

(b)

gene dna clone locus

(c)

gene dna clone locus

(d)

Figure 14: Different dtd graphs extracted from BIOML

C because Cycle-C needs to join all relations on key label paths. When XR becomes larger,

e.g., XR = 8, Cycle-C performs better (Fig. 16 (b)). In this case, Cycle-C, Cycle-E and SQLGen-R

used 3,867, 26,353, and 12,507 seconds.

26

Case Query n-Cycles dtd Graph

2a gene//locus 2 Fig. 14 (a)
2b gene//locus 2 Fig. 14 (b)
2c gene//dna 2 Fig. 14 (b)
3a gene//locus 3 Fig. 14 (c)
3b gene//locus 3 Fig. 14 (d)
4a gene//locus 4 Fig. 10 (b)
4b gene//dna 4 Fig. 10 (b)

Table 4: xpath queries over different dtd graphs extracted from BIOML

0

2000

4000

6000

8000

10000

2a 2b 2c 3a 3b 4a 4b

T
im

e
 (

S
e

c
)

R
E
C

Figure 15: xpath queries on the extracted BIOML dtds

0.1
1

10
100

1000
10000

13 14 15 16

T
im

e

(
S

e
c
)

R
E
C

(a) Vary XL (XR = 6)

0.1
1

10
100

1000
10000

5 6 7 8

T
im

e

(
S

e
c
)

R
E
C

(b) Vary XR (XL = 12)

Figure 16: Even//Data on the extracted 9-cycle GEDML dtd7 Related Work

There has been a host of work on querying xml using an rdbms, over xml data stored in an

rdbms or xml views published from relations (e.g., [10, 11, 25, 13, 21, 18, 33, 32]; see [22] for

an excellent recent survey). However, with the exception of the recent work of [21], as observed

by [22], no algorithm has been published for handling recursive xml queries over recursive dtds

for schema-based xml storage or in the context of xml publishing. Closest to our work is [21],

which proposed the first technique to rewrite (recursive) path queries over recursive dtds to sql

with the sql’99 recursion operator. We have remarked the differences between their approach

and ours in Sections 1 and 3.

At least two approaches have been proposed to querying xml data stored in relations via dtd-

based shredding. One approach is based on middleware and xml views, e.g., XPERANTO [33,

32] and SilkRoute [13]. In a nutshell, it provides clients with an xml view of the relations

representing the xml data; upon receiving an xml query against the view, it composes the

query with the view, rewrites the composed query to a query in a (rich) intermediate language

supported by middleware, and answers the query by using the computing power of both the

middleware and the underlying rdbms. However, this approach is tempered by the following

observations. First, it is nontrivial to define a (recursive) xml view of the relational data

without loss of the original information. Second, it requires middleware support and incurs

communication overhead between the middleware and the rdbms. Third, as observed by [21],

no algorithms have been developed for handling recursive queries over xml views with a recursive

dtd.

Another approach is by providing an algorithm for rewriting xml queries into sql

(extended with a recursion operator), which is the approach adopted by this work. To

this end, translation and optimization techniques have been proposed for translating XSLT

27

queries [18], XQuery [10, 11, 23, 25] and (recursive) path queries [21]. While the algorithms

of [18, 10, 11, 23, 25] cannot handle query translation in the presence of recursive dtds, their

optimization techniques by leveraging, e.g., integrity constraints [11, 23], virtual generic schema

and query normalization [25], dynamic interval encoding [10] and aggregation handling [18]

are complementary to our work. Some of these, along with techniques for query pruning

and rewriting [12], minimizing the use of joins [24], multi-query [30] and recursive-query

optimization [31], can be incorporated into our translation framework.

Surveys on recursive and cyclic query processing strategies can be found in [4, 19]. For OODBs,

[20] introduced techniques for processing cyclic queries, which are restricted to 1-cycle queries.

[8] proposed optimization techniques for generalized path expressions based on OO algebraic

transformation rules. These techniques are not directly applicable to query translations from

xml to sql.

8 Conclusion

We have proposed a new approach to translating a practical class of xpath queries over

(recursive) dtds to sql queries with a simple lfp operator found in many commercial rdbms.

The novelty of the approach consists in (1) a notion of regular xpath expressions capable of

capturing dtd recursion and xpath recursion in a uniform framework; (2) an efficient algorithm

for translating an xpath query over a recursive dtd to an equivalent regular xpath expression;

(3) an efficient algorithm for rewriting a regular xpath expression into an equivalent sequence

of sql queries; and (4) new optimization techniques for minimizing the use of the lfp operator.

These provide the capability of answering important xpath queries within the immediate reach

of most commercial rdbms.

Several extensions to the optimization techniques are targeted for future work. First, we

recognize that the use of the lfp operator in produced sql queries is not the only factor for

efficiency, and we are currently developing a cost model in order to provide better guidance for

xpath query rewriting. We are also exploring techniques for multi-query and recursive-query

optimization [30, 31] to simplify sql queries produced by our translations algorithms. We intend

to incorporate optimization by means of semantic information such as integrity constraints [11]

and satisfiability analysis of xpath queries in the presence of dtds. We also plan to extend our

algorithms to handle more complex xml queries, over xml data stored in an rdbms or (virtual)

xml views of relational data.

References

[1] R. Agrawal and P. Devanbu. Moving selections into linear least fixpoint queries. In ICDE,

1988.

[2] A. Aho and J. Ullman. Universality of data retrieval languages. In POPL, 1979.

[3] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to

implement logic programs. In PODS, 1986.

[4] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query

processing strategies. In SIGMOD, 1986.

28

[5] C. Beeri and R. Ramakrishnan. On the power of magic. J. Log. Program, 10, 1991.

[6] BIOML. BIOpolymer Markup Language.

http://xml.coverpages.org/BIOML-XML-DTD.txt.

[7] B. Choi. What are real DTDs like. In WebDB, 2002.

[8] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized path

expressions. In SIGMOD, 1996.

[9] J. Clark and S. DeRose. XML path language (XPath). In W3C Recommendation, Nov.

1999.

[10] D. DeHaan, D. Toman, M. Consens, and T. Ozsu. Comprehensive XQuery to SQL

translation using dynamic interval encoding. In SIGMOD, 2003.

[11] A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and

redundant storage. In VLDB, 2003.

[12] M. Fernandez and D. Suciu. Optimizing regular path expression using graph schemas. In

ICDE, 1998.

[13] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient evaluation of XML middleware

queries. In SIGMOD, 2001.

[14] D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS. IEEE

Data Eng. Bull, 22(3), 1999.

[15] GedML. Genealogy Markup Language.

http://xml.coverpages.org/gedml-dtd9808.txt.

[16] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,

25(2), 1993.

[17] IBM. DB2 XML Extender. http://www-3.ibm.com/software/data/db2/

extended/xmlext/index.html.

[18] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT programs to efficient SQL querie. In

WWW, 2002.

[19] Kambayashi. Query Processing in Database Systems, chapter Processing Cyclic Queries,

pages 63–78. Springer, 1985.

[20] Y.-C. Kim, W. Kim, and A. Dale. Cyclic query processing in object-oriented databases. In

ICDE, 1989.

[21] R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, and J. Naughton. Recursive XML

schemas, recursive XML queries, and relational storage: XML-to-SQL query translation.

In ICDE, 2004.

29

[22] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation literature:

The state of the art and open problems. In Xsym, 2003.

[23] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient XML-to-SQL query translation:

Where to add the intelligence. In VLDB, 2004.

[24] I. K. Kunen and D. Suciu. A scalable algorithm for query minimization. Technical report,

University of Washington, 2004.

[25] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on heterogeneous

data sources. In VLDB, 2001.

[26] Microsoft. SQLXML and XML mapping technologies.

http://msdn.microsoft.com/sqlxml/default.asp.

[27] P. Mishra and M. H. Eich. Join processing in relational databases. ACM Computing

Surveys, 24(1), 1992.

[28] M. Nunn. An overview of SQL server 2005 for the database developer. 2004.

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/dnsql90/html/sql ovyukondev.asp.

[29] Oracle. Oracle9i XML Database Developer’s Guide – Oracle XML DB Release 2.

http://otn.oracle.com/tech/xmldb/content.html.

[30] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient algorithms for multi query

optimization. In SIGMOD, 2000.

[31] M.-C. Shan and M.-A. Neimat. Optimization of relational algebra expressions containing

recursion operators. In ACM Annual Computer Science Conference, 1999.

[32] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. Funderburk. Querying

XML views of relational data. In VLDB, 2001.

[33] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, and

B. Reinwald. A general techniques for querying XML documents using a relational database

system. SIGMOD Record, 30(3), 2001.

[34] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational

databases for querying XML documents: Limitations and opportunities. In VLDB, 1999.

[35] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594–

614, 1981.

[36] H. Weinblatt. A new search algorithm for finding the simple cycles of a finite directed

graph. Journal of the ACM, 19(1):43–56, 1972.

30

