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Abstract

We study the problem of evaluating xpath queries over xml data that is stored in an

rdbms via schema-based shredding. The interaction between recursion (descendants-axis)

in xpath queries and recursion in dtds makes it challenging to answer xpath queries using

rdbms. We present a new approach to translating xpath queries into sql queries based on

a notion of extended xpath expressions and a simple least fixpoint (lfp) operator. Extended

xpath expressions are a mild extension of xpath, and the lfp operator takes a single input

relation and is already supported by most commercial rdbms. We show that extended

xpath expressions are capable of capturing both dtd recursion and xpath queries in a

uniform framework. Furthermore, they can be translated into an equivalent sequence of

sql queries with the lfp operator. We present algorithms for rewriting xpath queries over a

(possibly recursive) dtd into extended xpath expressions and for translating extended xpath

expressions to sql queries, as well as optimization techniques. The novelty of our approach

consists in its capability to answer a large class of xpath queries by means of only low-end

rdbms features already available in most rdbms, as well as its flexibility to accommodate

existing relational query optimization techniques. In addition, these translation algorithms

provide a solution to query answering for certain (possibly recursive) xml views of xml data.

Our experimental results verify the effectiveness of our techniques.

1 Introduction

It is increasingly common to find xml data stored in a relational database system (rdbms),

typically based on dtd/schema-based shredding into relations [43] as found in many commercial

products (e.g., [23, 35, 38]). With this comes the need for answering xml queries using rdbms,

by translating xml queries to sql.

The query translation problem can be stated as follows. Consider a mapping τd, defined in

terms of dtd-based shredding, from xml documents conforming to a dtd D to relations of a

schema R. Given an xml query Q, we want to find (a sequence of) equivalent sql queries Q′

such that for any xml document T conforming to D, Q over T can be answered by Q′ over the

∗An extended abstract was presented at the 31st Int’l Conf. on Very Large Data Bases (VLDB),
2005.
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relation instance τd(T ) of R, i.e., Q(T ) = Q′(τd(T )). Here we allow dtds D to be recursive and

consider queries Q in xpath [10], which is the core of xml query languages XQuery and XSLT.

As observed in [28], a closely related issue concerns query answering for xml views of xml

data. Consider an xml view V of an xml document T . For practical reasons, e.g., xml access

control [14] and data integration [31], the view V may necessarily be virtual and specified by a

recursive dtd. To answer xpath queries Q posed on V without materializing V , one needs to

rewrite Q into an equivalent xml query Q′ on the underlying source T such that Q(V ) = Q′(T ).

The query translation problem is, however, nontrivial: dtds (or xml Schema) found in

practice are often recursive [8] and complex. This is particularly evident in real-life applications

(see, e.g., BIOML [7] and GedML [20], which, when represented as graphs, contains a number

of nested and overlapping cycles). The interaction between recursion in a dtd and recursion

in an xml query complicates the translation. When the dtd has a tree or DAG structure, a

natural approach [24] is based on enumerating all matching paths of the input xpath query

in a dtd, sharing a single representation of common sub-paths, rewriting these paths into

sql queries, and taking a union of these queries. However, this approach no longer works on

recursive dtds since it may lead to infinitely many paths when dealing with the descendant-

or-self axis ‘//’ in xpath. Another approach is by means of a rich intermediate language and

middleware as proposed in [41]: first express input xml queries in the intermediate language,

and then evaluate the translated queries leveraging the computing power of the middleware and

the underlying rdbms. However, as pointed out by a recent survey [28], this approach requires

implementation of the middleware on top of rdbms, and introduces communication overhead

between the middleware and the rdbms, among other things. It is more convenient and possibly

more efficient to translate xpath queries to sql and push the work (sql queries) to the underlying

rdbms, capitalizing on the rdbms to evaluate and optimize the queries. This, however, calls for

an extension of sql to support certain recursive operator. As observed by [28], although there

has been a host of work on storing and querying xml using an rdbms [11, 19, 24, 27, 33, 41, 42],

the problem of translating recursive xml queries into sql in the presence of recursive dtds has

not been well studied, and it was singled out as the most important open problem in [28].

Recently an elegant approach was proposed in [27] to translating path queries to sql with

the linear-recursion construct with...recursive of sql’99. The algorithm of [27] is capable of

translating path queries with // and limited qualifiers to (a sequence of) sql queries with

the sql’99 recursion operator. Unfortunately, this approach has several limitations. The

first weakness is that it relies on the sql’99 recursion functionality, which is not currently

supported by many commercial products including Oracle and Microsoft sql server. One wants

an effective query translation approach that works with a wide variety of products supporting

low-end recursion functionality, rather than requiring an advanced dbms feature of only the

most sophisticated systems. Second, the sql queries with the sql’99 recursion produced by the

translation algorithm of [27] are typically large and complex, and cannot be effectively optimized

by all platforms supporting sql’99 recursion for the same reasons that not all rdbms can

effectively optimize mildly complex non-recursive queries [18]. Worse still, as the with...recursive

operator is treated as a blackbox, the user can do little to optimize it. A third problem is that

the class of path query handled by the algorithm of [27] is too restricted to express xpath queries
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commonly found in practice. Finally, this approach does not help xpath query answering for

xml views despite its analogy with xpath query translation to relational views.

In light of this we propose a new approach to translating a class of xpath queries to sql,

which also provides a solution to query answering for certain xml views of xml data. The

approach is based on a notion of extended xpath expressions and a simple least fixpoint (lfp)

operator. Extended xpath expressions generalize xpath and regular xpath [34] by supporting

variables and general Kleene closure E∗ instead of //. The lfp operator Φ(R) takes a single

input relation R instead of multiple relations as required by the sql’99 with...recursion operator.

Although theoretically the with...recursive operator can be encoded in terms of the lfp operator,

the coding introduces additional overhead. The lfp operator is already supported by many

commercial systems such as Oracle (connectby) and IBM DB2 (with...recursion), and is supported

by Microsoft sql server (common table [37]). We show that extended xpath expressions are

capable of expressing a large class of xpath queries over a (recursive) dtd D, by substituting

the general Kleene closure E∗ for //, and by giving a finite representation of possibly infinite

matching paths of an xpath query in terms of variables and E∗, in polynomial time. That is,

extended xpath expressions capture both dtd recursion and xpath recursion in a uniform and

compact framework. Moreover, we show that each extended xpath expression can be rewritten

to a sequence of equivalent sql queries with the lfp operator. That is, low-end rdbms features

(sql with Φ(R)) suffice to support complex xpath queries.

Taken together, our approach works as follows. Given an xpath query Q on a (possibly

recursive) dtd, we first rewrite Q into an extended xpath query EQ that characterizes all

matching paths, and then translate EQ to an equivalent sequence Q′ of sql queries. Both EQ

and Q′ are bounded by a low polynomial in the size of the input query Q and the dtd D. To this

end we provide an efficient algorithm for translating an xpath query over a (recursive) dtd D

to an equivalent extended xpath query, and a novel algorithm for rewriting an extended xpath

query into a sequence of sql queries with the lfp operator, as well as optimization techniques.

Contributions. The main contributions of this paper include the following.

• The notion of extended xpath expressions that captures dtd recursion and xpath recursion

in a uniform framework.

• The use of the simple lfp operator commonly found in commercial products to express a

large class of xpath queries.

• An efficient algorithm for rewriting xpath queries over a (possibly recursive) dtd into

extended xpath queries that characterize matching paths, based on dynamic programming.

• A novel algorithm for rewriting an extended xpath expression to a sequence of sql queries

with the lfp operator.

• Experimental results verifying the effectiveness of our approach and techniques, using

real-life xml dtds.

Our approach has several salient features. (1) It requires only low-end rdbms features

instead of the advanced sql’99 recursion functionality. As a result it provides a variety of

commercial rdbms with an immediate capability to answer xpath queries over recursive dtds.

(2) It produces sql queries that are less complex than their counterparts generated with the
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sql’99 recursion, and can be optimized by most rdbms platforms. Furthermore, it can easily

accommodate optimization techniques developed for sql queries, e.g., multi-query [39] and

recursive sql query optimization [40]. (3) It is capable of handling a class of xpath queries

supporting child, self-or-descendants and union as well as rich qualifiers with data values,

conjunction, disjunction and negation, which are beyond those studied in earlier proposals.

These thus yield an effective and efficient method that works with most rdbms products, to

answer a large class of xpath queries found in practice. (4) In contrast to the approach of [27],

our approach provides also an effective solution to xpath query answering for certain xml views.

As recently observed in [15], the query answering problem is nontrivial because xpath is not

closed under query rewriting, i.e., for an xpath query Q posed on target xml data V , there may

not exist an equivalent xpath query Q′ on the underlying source such that Q(V ) = Q′(T ); worse

still, even if an equivalent xpath query Q′ exists and when V is specified by a nonrecursive dtd,

it takes exponential time to compute Q′ in the size of Q. By leveraging extended xpath, our

first translation algorithm, namely, the one from xpath to extended xpath, provides an effective

solution to the query answering problem for a class of xml views.

Organization. The remainder of the paper is organized as follows. Section 2 reviews dtds,

xpath and schema-based mapping from xml to relations; it also introduces extended xpath.

Section 3 outlines our query translation approach as opposed to the one given in [27]. Section 4

provides an algorithm for translating xpath queries to extended xpath expressions, followed by

an algorithm for rewriting extended xpath expressions into sql with a simple lfp operator in

Section 5. Experimental results are presented in Section 6, followed by related work in Section 7.

Finally, Section 8 concludes the paper.

2 DTD, XPath, and Schema-Based Shredding

In this section, we review dtds, xpath queries, and dtd-based shredding of xml data into

relations. We also introduce the notion of extended xpath, an extension of a fragment of xpath.

2.1 DTDs

Without loss of generality we represent a dtd D as an extended context-free grammar of the

form (Ele,Rg, r), where Ele is a finite set of element types; r is a distinguished type, called the

root type; and Rg defines the element types: for any A in Ele, Rg(A) is a regular expression α:

α ::= ǫ | B | α,α | (α | α) | α∗,

where ǫ is the empty word, B is a type in Ele (referred to as a subelement type of A), and

‘|’, ‘,’ and ‘∗’ denote disjunction, concatenation and the Kleene star, respectively. We refer to

A → Rg(A) as the production of A. To simplify the discussion we do not consider attributes,

and we assume that an element v may possibly carry a text value (PCDATA) denoted by v.val.

An xml document that conforms to a dtd is called an xml tree of the dtd.

Along the same lines as [43], we represent dtd D as a graph, called the dtd graph of D

and denoted by GD. In GD, each node represents a distinct element type A in D, called the A

node, and an edge represents the parent/child relationship. More specifically, for any production

A → α, there is an edge from the A node to the B node for each subelement type B in α; the

edge is labeled with ‘∗’ if B is enclosed in α∗
0 for some sub-expression α0 of α. This simple
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Figure 1: A graph representation of the dept dtd.

graph representation of dtds suffices since, as will be seen shortly, we do not consider ordering

in xpath. When it is clear from the context, we shall use dtd and its graph interchangeably.

A dtd D is recursive if it has an element type that is defined (directly or indirectly) in terms

of itself. Note that the dtd graph GD of D is cyclic if D is recursive. A dtd graph GD is called

a n-cycle graph if GD consists of n simple cycles, where a simple cycle refers to a cycle in which

no node appears more than once.

A dtd D is contained in another dtd D′ if the dtd graph of D is a sub-graph of D′, i.e., there

is a homomorphism mapping from D to D′ such that the root of D is mapped to the root of D′.

Example 2.1: We consider a dept dtd (E, dept, Rg) as our running example, where E

= {course, cno, title, prereq, takenBy, project, student, sno, name, qualified,

pno, ptitle, required}, and Rg is defined as follows:

dept → course* course → cno, title, prereq, takenBy, project*

prereq → course* student → sno, name, qualified

takenBy → student* project → pno, ptitle, required

qualified → course* required → course*

A dept has a list of course elements. A course consists of a cno (course code), a title, a

prerequisite hierarchy (via prereq), and all the students who have registered for the course (via

takenBy). A course may have several projects. A student has a sno (student number), a name

and a list of qualified courses. Each project has a pno (project number), a ptitle (title)

and required courses (required). Its dtd graph, a 3-cycle graph, is shown in Fig. 1 (a). 2

2.2 XPath and Extended XPath

XPath. We consider a class of xpath queries [10] that supports recursion (descendant-or-self),

union and rich qualifiers, given as follows.

p ::= ǫ | A | ∗ | p/p | //p | p ∪ p | p[q]

where ǫ, A and ∗ denote the empty path, a label and a wildcard, respectively; ‘∪’, ‘/’ and ‘//’

are union, child-axis and descendant-or-self-axis, respectively; and q is a qualifier, defined as

q ::= p | text() = c | ¬q | q ∧ q | q ∨ q

where c is a constant, and p is defined above.
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An xpath query p, when evaluated at a context node v in an xml tree T , returns the set of

nodes of T reachable via p from v, denoted by v[[p]]. In particular, v[[p1[q]]] consists of nodes

reachable via p1 from v that satisfy the qualifier [q]. More specifically, a node v′ satisfies the

qualifier [q] as follows: the atomic predicate [p] holds at v′ iff v′[[p]] is nonempty, i.e., there exists

a node reachable via p from v′; and [text() = c] is true iff v.val equals the constant c. The

boolean operations are self-explanatory. We also use ∅ to denote a special query, which returns

the empty set over all xml trees, with ∅ ∪ p equivalent to p and p/∅/p′ equivalent to ∅.

This class of xpath queries properly contains branching path queries studied in [27] and tree

pattern queries (see, e.g., [3]). In the sequel, we refer to this class of queries simply as xpath.

Example 2.2: Consider two xpath queries.

Q1 = dept//project

Q2 = dept/course[//prereq/course[cno="cs66"] ∧ ¬//project

∧ ¬ takenBy/student/qualified//course[cno = "cs66"]]

Over an xml tree of the dept dtd of Fig.1, query Q1 is to find all course-related projects, and

Q2 is to find courses that (1) have a prerequisite cs66, (2) have no project related to them or to

their prerequisites, but (3) have no student who registered for the course and took cs66. 2

Extended XPath. As will be seen in the next section, to translate xpath queries over a

(possibly recursive) dtd to sql, we first rewrite xpath queries to expressions in an extension of

xpath, referred to as extended xpath expressions and syntactically defined as follows:

E ::= ǫ | A | X | E/E | E ∪E | E∗ | E[q],

q ::= E | text() = c | ¬q | q ∧ q | q ∨ q.

where X is a variable, and E∗ denotes the Kleene closure of E.

Observe that an expression E without any variable is a query in regular xpath proposed in

[34]. Regular xpath expressions are the “least upper bound” of xpath and regular expressions.

They differ from xpath queries in that, first, they support general Kleene closure E∗ as opposed

to restricted recursion ‘//’, and second, they do not allow wildcard ∗ and descendant ‘//’. They

extend regular expressions by supporting qualifiers. The motivation for using E∗ instead of ‘//’ is

twofold. First, the expressive power of E∗ is required for encoding both dtd recursion and xpath

recursion. As will be seen shortly, with E∗ one can define a finite representation of (possibly

infinite) matching paths of an xpath query over a recursive dtd. Second, E∗ “instantiates” //

with paths in the dtd. In a nutshell, E takes a union of all matching simple cycles of // and

E∗ then applies the Kleene closure to the union; each of these paths can then be mapped to a

sequence of relations connected with joins. The semantics of evaluating E over an xml tree is

similar to its xpath counterpart.

An extended xpath query Q is a sequence of equations of the form Xi = Ei, where for i ∈ [1, k],

Xi is a variable, Ei is an extended xpath expression, and Xi does not appear in Ej if i < j.

Intuitively, the equations specify bindings of variables and sub-queries. It can be easily verified

that Q is equivalent to a sequence of equations of the form Xi = E′
i, where E′

i is a regular xpath

query, i.e., an extended xpath expression without variables. The semantics of evaluating Q over
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Figure 2: Example dtd graphs.

an xml tree is therefore straightforward: for i from k downward to 1, evaluate Ei and substitute

the result of Ei for Xi−1 in Ei−1.

The use of variables in extended xpath is to represent a number of matching paths in

polynomial that would otherwise take exponential time in regular xpath and would not

be expressible in xpath. To illustrate this, let us consider the following example, taken

from [13], which shows that representing a nondeterministic finite state automaton with a regular

expression takes at least exponential time, even if the automaton is non-recursive.

Example 2.3: Consider a dtd D1 for which the dtd graph consists of (a) nodes Ai for i ∈ [1, n],

where the root is A1, (b) edges (Ai, Aj) for all i, j ∈ [1, n] and i < j. Figure 2(a) shows such a

dtd graph for n = 4. This dtd is contained in another dtd D2, shown in Fig. 2(b), which, in

addition, has a node B and moreover, edges (B,An) and (Ai, B) for i < n. Note that these dtd

graphs are acyclic, i.e., they are non-recursive. There is a natural mapping σ0 from instances

of D1 to instances of D2 such that for any document T that conforms to D2, from σ0 an xml

document V can be derived such that V conforms to D1 and moreover, (a) the root rv of V

maps to the root rt of T , and (b) for any element u in V that is reached from rv via a path ρ,

it is mapped to an element σ0(u) that is reachable from rt via the same path ρ.

Now consider a query Q = //An posed on V that is to find all An nodes in V . Suppose that

we want to find an equivalent query Q′ that, when posed on T , returns the same result as Q on

V . The query Q′ is then to find all An nodes in T that are reachable from the root without going

through any B node in T . One can verify the following. (1) The query Q′ is not expressible in

the xpath fragment given above. (2) Although query Q′ is expressible in regular xpath, it takes

necessarily O(2n) space (the proof for this follows from the argument of [13]). (3) The query Q′

can be expressed in extended xpath in polynomial space, as follows.

X(1,4) = A4 ∪A2/X(2,4) X(2,4) = A4 ∪A3/X(3,4) X(3,4) = A4

As we will seen shortly, we may encounter such queries in xpath query translation. This

motivates us to use extended xpath instead of regular xpath and xpath. 2

2.3 Mapping DTDs to a Database Schema

We next review shredding of xml data into relations. We focus on a dtd-based approach since

it is supported by most rdbms [23, 35, 38].

We adopt the shared-inlining technique of [43]. In a nutshell, the inlining algorithm partitions

a dtd graph GD into subgraphs, G1, G2, · · · such that any A-node is represented in exactly one

subgraph and there is no edge labeled ‘∗’ in any subgraph. Each subgraph Gi is mapped to a

relation schema Ri. Each relation schema has a key attribute ID. The edges from a subgraph

Gi to a subgraph Gj are specified using parentId in the corresponding relation schema Rj. If a
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Table 1: A database encoding an xml tree of the dept dtd

subgraph Gj has more than one incoming edge, say from Gi and Gk, a parentCode attribute is

introduced into the relation schema Rj indicating the parent code of the Rj tuples.

We use τ : D → R to denote a mapping from dtd D to a relational database schema R,

which consists of a set of relation schemas. Observe that from τ one can easily derive a data

mapping, denoted by τd, from xml trees of D to instances of R.

To simplify the discussion we assume that the mapping τ maps each element type A to a

relation RA in R, which has three columns F (from, i.e., parentId), T (to, i.e., ID) and V (the

value of all other attributes). Intuitively, in a database τd(T ) representing an xml tree T , each

RA tuple (f, t, v) represents an edge in T from a node f to an A-element t which may have a text

value v, where t and f are denoted by the node IDs in T and are thus unique in the database,

and v is ‘ ’ in the absence of text value at t. In particular, f = ‘ ’ if and only if f is the root

of T . This assumption does not lose generality: our query translation techniques can be easily

extended to cope with mappings without this restriction.

Example 2.4: With the shared-inlining technique, the dtd graph GD of Fig. 1 (a) is partitioned

into four subgraphs rooted at dept, course, project, and student, respectively (see Fig. 1 (b)).

It is mapped to a relational database schema τ(D) consisting of four corresponding relation

schemas, Rd, Rc, Rp and Rs:

Rd(F, T)

Rc(F, T, cno, title, prereq, takenBy, parentCode)

Rs(F, T, sno, name, qualified)

Rp(F, T, pno, ptitle, required)

A sample database is shown in Table 1, which only shows F and T attributes. From Table 1

one can find paths in the xml tree of the dept dtd, e.g., d1.c1.c2.c3 and d1.c1.c2.p1.c4.p2. 2

3 Overview: From XPath to SQL

The query translation problem from xpath to sql is stated as follows. Let τ : D → R be a

mapping from a dtd D to a relational schema R, and τd be the corresponding data mapping

from xml trees of D to the relational instance of R. The problem is to find an algorithm that,

given an xpath query Q, effectively computes an equivalent sequence of relational queries Q′

such that for any xml tree T of the dtd D, Q(T ) = Q′(τd(T )).

In this section we first review the approach proposed by [27], the only solution published

so far for the query translation problem in the presence of recursive dtds. To overcome its

limitations, we then propose a new approach and outline it in this section; detailed algorithms

are provided in the next two sections. Finally, we show that our algorithms also provides a

solution to query answering for certain xml views of xml data.
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1. with
2. R (F, T, Rid) as (
3. (select Rc.F , Rc.T , Rid(’c’) from Rd, Rc)
4. where Rc.T = Rd.F
5. union all
6. (select R.F , Rc.T , Rid(’c’)
7. from R, Rc where R.T = Rc.F and Rid = ’c’)
8. union all
9. (select R.F , Rs.T , Rid(’s’)
10. from R, Rs where R.T = Rs.F and Rid = ’c’)
11. union all
12. (select R.F , Rc.T , Rid(’c’)
13. from R, Rc where R.T = Rc.F and Rid = ’s’)
14. union all
15. (select R.F , Rp.T , Rid(’p’)
16. from R, Rp where R.T = Rp.F and Rid = ’c’)
17. union all
18. (select R.F , Rc.T , Rid(’c’)
19. from R, Rc where R.T = Rc.F and Rid = ’p’))

Figure 3: The sql statement generated by SQLGen-R

3.1 Linear Recursion of SQL’99

The algorithm of [27], referred to as SQLGen-R, handles recursive path queries over recursive

dtds based on the sql’99 recursion operator. In a nutshell, given an input path query, SQLGen-R

first derives a query graph, GQ, from the dtd graph to represent all matching paths of the query

in the dtd graph. It then partitions GQ into strongly-connected components c1, . . . , cn, sorted

in the top-down topological order. It generates an sql query Qi for each ci in the topological

order, and associates Qi with a temporary relation TRi such that TRi can be directly used

in later queries Qj for j > i. The sequence TR1 ← Q1; . . . ; TRn ← Qn is the output of the

algorithm. If a component ci is cyclic, the sql query Qi is defined in terms of the with...recursive

operator. More specifically, it generates two parts from ci: an initialization part and a recursive

part. The initialization part captures all “incoming edges” into ci. The recursion part first

creates an sql query for each edge in ci, and then encloses the union of all these (edge) queries

in a with...recursive expression. It should be noted that if ci has k edges, the query Qi actually

calls for a fixpoint operator φ(R,R1, R2, · · ·Rk) with k + 1 input relations, defined as follows:

R0 ← R (1)

Ri ← Ri−1 ∪ (Ri−1
1C1

R1) ∪ · · · ∪ (Ri−1
1Ck

Rk)

where R0 corresponds to the initialization part, Rj corresponds to an sql query coding an edge

in ci, and Cj indicates additional conditions associated with the join, for each j ∈ [1, k].

Example 3.1: Recall the mapping given in Example 2.4 from the dept dtd to the relational

schema R consisting of Rs, Rc, Rp, Rd, and the xpath query Q1 = dept//project given in

Example 2.2, which, over the dtd graph of Fig. 1 (b), indicates Rd//Rp. Given Q1 and the dtd

graph of Fig. 1 (b), the algorithm SQLGen-R finds a strongly-connected component (Rc//Rp)

having 3 nodes and 5 edges, and produces a single sql query using a with...recursive expression,

as shown in Fig. 3. More specifically, the initial part of the recursion is given in lines 3-4, while
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iteration F T Rid

0 d1 c1 ‘c’
1 c1 c2 ‘c’

c1 s1 ‘s’
c1 s2 ‘s’

2 c2 c3 ‘c’
c2 p1 ‘p’
s2 c5 ‘c’

3 p1 c4 ‘c’
4 c4 p2 ‘p’

Table 2: An output of SQLGen-R at each iteration.

the recursion part is lines 6-19. Each edge in the graph Fig.1 (b) is translated into a select

statement. Observe that in the select statement, it uses Rid to keep track of where the tuples in

the result relation R come from. For example, the select statement for the edge Rc → Rc (lines 6-

7) inserts a tuple into the result relation R with its F and T values in addition to a Rid value

‘c’ indicating that it is from relation Rc. The usage of Rid is to join right parent/child tuples.

As line 10 shows, in the select statement for the edge Rc → Rs, it needs to join with tuples in

R that is originally from Rc (Rid = ‘c’). Similarly for Rs → Rc, Rc → Rp, and Rp → Rc (lines

12-13, 15-16 and 18-19, respectively). When evaluated over the relational database of Table 1,

the query of Fig. 3 returns the result shown in Table 2. Using a selection on Rid = ‘p’ on Table

2, one can find that p1 and p2 are the descendants of p. 2

Observe the following about the query of Fig. 3. First, it actually requires a fixpoint operator

that takes 4 relations as input. As we have remarked in Section 1, φ(R,R1, R2, · · ·Rk) is a high-

end feature that few rdbms support. Although theoretically one can encode this in terms of

a lfp Φ(R) that takes a single input relation and is supported by most commercial rdbms,

the coding introduces space overhead. Second, it is a complex query consisting of 5 joins and

5 unions. That is, each iteration of the fixpoint computation needs to compute 5 joins and 5

unions. Third, with...recursive is treated as a black box. In this example, all 5 relations join

the result relation R in the center, which forms a star shape. The relation in the center keeps

growing, but one can do little to optimize the operations inside the with...recursion expression.

3.2 A New Approach

To overcome the limitations of the previous approach, we propose a new approach to translating

xpath queries to sql, based on a notion of extended xpath expressions and the simple lfp

operator Φ(R). Below we first review the simple lfp operator. We then outline our approach.

The lfp operator. The lfp operator Φ(R) takes a single input relation R, as shown below:

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
1C R0) (2)

where C is a condition associated with the join. This lfp operator is already supported by most

commercial products, e.g., by Oracle and IBM DB2 are shown in Fig. 4.

To illustrate how the lfp operator handles Kleene closure, consider an extended xpath

expression (A1/ · · · /An)∗ representing a simple cycle A1 → · · · → An → A1. This simple
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lfp Φ(R) in Oracle
select F , T from R connect by F = prior T

lfp Φ(R) in DB2
1. with
2. RΦ(F, T ) as (
3. (select F , T from R)
4. union all
5. (select RΦ.F , R.T from RΦ, R where RΦ.T = R.F ))

Figure 4: Implementation of lfp in Oracle and DB2

extended xpath expression can be rewritten into Φ(R) (Eq. (2)) by letting R← ΠR1.F,Rn.T (R1 1

R2 1 · · · 1 Rn), where the projected attributes are taken from the attributes F (from) and T (to)

in relations R1 and Rn, respectively. The join between Ri/Rj is expressed as Ri 1Ri.T=Rj .F Rj,

i.e., it returns Ri tuples that connect to Rj tuples. In general, we rewrite E∗ to Φ(R), where R

is a temporary relation associated with a query that encodes E.

A new approach for query translation. Based on the lfp operator Φ(R) and extended

xpath queries, we propose a new framework for translating xpath to sql. As depicted in Fig. 5,

the framework translates an input xpath query Q to sql in two steps. First, it rewrites Q

over a (possibly recursive) dtd D to an equivalent extended xpath query EQ over any dtd D′

that contains D, i.e., the dtd graph of D is a subgraph of the dtd graph of D′. The query

EQ has the form (X1 = E1, . . . ,Xk = Ek) as mentioned above. Second, it rewrites EQ into

an equivalent sequence Q′ of sql queries based on a mapping τ : D → R, and using the lfp

operator to handle Kleene closure. The choice of extended xpath in the first step is motivated

by the following reasons. As remarked earlier, the Kleene closure of extended xpath allows us

to instantiate ‘//’ of xpath, and capture recursion in xpath and dtd recursion in a uniform

framework. Furthermore, as illustrated in Example 2.3, the use of variables allows us to extract

common sub-queries and thus avoid the exponential lower bound of translation to regular xpath.

In contrast to the approach of [27], this framework introduces more opportunities for

optimization, as illustrated by the example below.

Example 3.2: Let us consider again evaluating the xpath query Q1 = dept//project over

the dept dtd of Fig. 1, in the same setting as in Example 3.1. Our translation algorithms first

translate Q1 to an extended xpath query EQ1
= (XQ1

= Rd/Rc/X
∗/Rp, X = Rc ∪ Rs/Rc ∪

Rp/Rc). It then rewrites EQ1
to a sequence of sql queries (written in relational algebra):

Rcc ← Rc

Rcsc ← ΠRs.F,Rc.T (Rs 1Rs.T=Rc.F Rc)

Rcpc ← ΠRp.F,Rc.T (Rp 1Rp.T=Rc.F Rc)

R ← Rcc ∪Rcsc ∪Rcpc

Rγ ← Φ(R) ∪ΠT,T (Rc)

Rf ← ΠRd.T,Rp.T (Rd 1Rd.T=Rc.F Rc 1Rc.T=Rγ .F Rγ 1Rγ .T=Rp.F Rp)

11



to an extended XPath query

Q
Q’

Dmapping from      to R

output input XPath
query Q

translate from extended XPath
to a sequence of SQL queries
with the simple lfp operator

translate from XPath Q

DTD D

E

Figure 5: Translation from XPath to SQL

The above sql sequence is the output of our algorithms. Contrast this with Example 3.2. While

our sql queries use 3 unions and 5 joins in total, they are evaluated once only, instead of once

in each iteration of the lfp computation. In other words, we pull join/union out from the black

box of with...recursive. This not only gives us more opportunities to optimize join/union, but

also allows us to push selection conditions into the lfp operator, along the same lines as the lfp

optimization by distribution of selections suggested by [2], as will be illustrated in Section 5. 2

In addition to optimization opportunities, the first step of the framework in fact provides a

solution to query answering for certain xml views of xml data.

Query answering for xml views. Consider a class of gav mappings σ : D1 → D2, where

D1,D2 are target and source dtds, respectively (see, e.g., [22, 31] for gav mappings), such that

for any instance T of D2, σ defines a view V such that for any xml element v ∈ V , σ(v) is

contained in an xml element u in T , and V is a sub-structure of T . For instance, the mapping

σ0 given in Example 2.3 is such a mapping from the dtd of Fig. 2(a) to the dtd of Fig. 2(b).

Such views are found in many applications, e.g., access control for xml [14] where one only

wants to reveal parts of T to authorized users, or data integration [31] where part of the source

is migrated to the target. In these applications V is often virtual.

Now consider an xpath query posed on V . We want to answer the query without materializing

V . This highlights the need for a query answering algorithm that, given an xpath query Q posed

on D1, effectively computes a query Q′ on D2 such that Q(V ) = Q′(T ).

This query answering problem is, however, nontrivial. Indeed, consider query Q given in

Example 2.3, which is posed on the view V . The equivalent query Q′ on the source T is to find all

An nodes reachable from A1 without going through any B nodes. As shown in Example 2.3, this

query is not expressible in xpath, and although it is definable in regular xpath, it is necessarily

of exponential size. As recently observed in [15], xpath is not closed under query rewriting and

although regular xpath is closed, it incurs an exponential lower bound for rewritten queries.

In contrast, we show that the translation algorithm of the step 1 of our framework provides

a solution to the query answering problem for the class of gav xml views described above.

Indeed, given any xpath query Q posed on D1, the algorithm effectively computes Q′ in

extended xpath in polynomial time. Furthermore, the query Q′ has the following property. For

any D2 that contains D1, define a mapping σ from instances of D1 to instances of D2 that,

given any instance T of D2, derives an instance V of D1 such that V is a subtree of T : σ maps

the root rv of V to the root rt of T , each A element v of V to an A element σ(v) of T such

that if v is reached from rv via a path ρ, then σ(v) can reached from rt via the same path ρ.

Then Q(V ) = Q′(T ). We say that Q′ is equivalent to Q over all dtds D2 that contain D1.

Furthermore, we say that Q′ is equivalent to Q w.r.t. two element types A,B over all dtds D2

that contains D1 if when evaluated at any A element v in V , the set of B elements returned by
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Q is the same as the set of B elements returned by Q′ when evaluated at σ(v) in T .

In Section 4 we present a translation algorithm to show that every xpath query Q over a

(recursive) dtd D can be rewritten to an extended xpath query EQ that is equivalent to Q over

all dtds containing D. Then, we provide another algorithm in Section 5 to show that the simple

lfp operator Φ(R) suffices to handle general Kleene closure in an extended xpath query EQ.

4 From XPath to Extended XPath

In this section, we present an algorithm for rewriting an xpath query Q over a (recursive) dtd

D to an extended xpath query EQ that is equivalent to Q′ over all dtds containing D. We

first develop an algorithm for handling the descendant-axis (‘//’) of xpath, and then give the

translation algorithm for the xpath fragment defined in Section 2.

4.1 Translation of the Descendant Axis

Consider an xpath query Q = A//B over a dtd D. The query, when evaluated at an A-element

v in an instance V of D, is to find all B descendants of v. We want to find an extended xpath

query Q′, denoted by rec(A,B), that is equivalent to Q over all dtds that contain D.

An algorithm is given by Tarjan in [45] that, given a graph GD and two nodes A,B ∈ GD,

finds a regular expression which represents the set of all paths in GD from A to B. We sketch

Tarjan’s algorithm [45] in Fig. 6, and denote it by CycleE as it is based on cycle expansion.

Let GD = (N,E), where N is the set of nodes and E is the set of edges of GD. Following

the notations of [45], we associate the nodes in GD with numbers from 1 to n = |N |, and use

a regular expression M [i, j, k] to maintain all possible paths from node i to node j via nodes

whose numbers are less than or equal to k, where k can be zero indicating a “path” via no nodes

in GD. Algorithm CycleE first initializes all M [i, j, 0] (line 1-7). It then expands M [i, j, k] for all

i, j by incrementing k, i.e., by inspecting M [i, k−1, k] and M [k, j, k] while including all possible

cycles, i.e., M [k, k, k − 1]∗, at node k (lines 8-13).

The regular expression M [1, n, n] returned by Algorithm CycleE precisely represents all paths

from node A to node B, where A and B are numbered 1 and n, respectively. Unfortunately, the

algorithm takes exponential time and exponential space.

Lemma 4.1: Given a graph GD with n nodes and nodes A,B in GD, CycleE finds a regular

expression capturing all paths in GD from node A to B in Θ(n32n)-time and Θ(n22n)-space. 2

Proof: The correctness of algorithm was verified in [45]. The upper bound is due to line 12

in CycleE (Fig. 6), which copies sub-expressions and concatenates them into one. In fact, it

is already shown in [13] that the bounds given above are also the lower bounds for converting

nondeterministic finite state (nfa) to regular expressions; as a result, when the graph DG

is treated as a nfa with A as the start state and B the final state, any regular expressions

characterizing the nfa have the lower bounds given above. 2

Recall the definition of extended xpath expression and extended xpath query. We show

that one can find a query rec(A,B) representing all paths from A to B in low polynomial time.

Indeed, we present a mildly modified CycleE, denoted by CycleEX, that computes rec(A,B). The

algorithm uses the following variables. (a) M [i, j, k] is an extended xpath expression representing

all possible paths from node i to node j via nodes no larger than k. (b) Variable X[i, j, k]
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Algorithm CycleE(GD, A, B)

Input: a graph GD and two nodes A and B in GD.
output: a regular expression representing all paths from A to B in GD.

1. for i = 1 to n do
2. for j = 1 to n do
3. if i = j
4. then M [i, j, 0] := ∅;
5. else if i 6= j and (i, j) ∈ E(GD)
6. then M [i, j, 0] := i/j;
7. else M [i, j, 0] := ∅;
8. for k = 1 to n do
9. for i = 1 to n do
10. for j = 1 to n do
11. if M [i, k, k − 1] 6= ∅ and M [k, j, k − 1] 6= ∅
12. then M [i, j, k] := (M [i, j, k − 1]) ∪ (M [i, k, k − 1]/M [k, k, k − 1]∗/M [k, j, k − 1]);
13. else M [i, j, k] := M [i, j, k − 1];
14. return M [A, B, n];

Figure 6: CycleE (Tarjan’s Algorithm for finding regular expressions)

Algorithm CycleEX(GD, A, B)

Input: a dtd graph GD and two nodes A and B in GD.
output: an extended xpath query rec(A, B) representing all paths from A to B in GD.

1. for i = 1 to n do
2. for j = 1 to n do
3. if i = j
4. then M [i, j, 0] := ∅;
5. else if i 6= j and (i, j) ∈ E(GD)
6. then M [i, j, 0] := i/j;
7. else M [i, j, 0] := ∅;
8. for k = 1 to n do
9. for i = 1 to n do
10. for j = 1 to n do
11. if M [i, k, k − 1] 6= ∅ and M [k, j, k − 1] 6= ∅
12. then M [i, j, k] := ‘X [i, j, k − 1] ∪ X [i, k, k − 1]/X [k, k, k − 1]∗/X [k, j, k − 1]’;
13. else M [i, j, k] := ‘X [i, j, k − 1]’;
14. rec(A, B) := {(X [i, j, k] = M [i, j, k], where M [i, j, k] 6= ∅ | i, j, k ∈ [0, n]};
15. optimize rec(A, B) by removing redundant equations and return rec(A, B).

Figure 7: CycleEX for extended xpath expressions

indicates equation X[i, j, k] = M [i, j, k] in the output. (c) X[k, k, k − 1]∗ indicates equation

X[k, k, k− 1] = cycle(M [k, k, k− 1]), which represents cycles at node k. The algorithm is shown

in Fig. 7. The initialization part (lines 1-7) is the same as its counterpart in CycleE. In contrast

to CycleE, M [i, j, k] is represented as an expression (string) with only at most four operators and

four variables rather than concatenating four expressions, by capitalizing on variables (lines 8-

13). The length of each M [i, j, k] is thus constant. Finally, we construct extended xpath query

rec(A,B) by listing equations (i.e., Xi = Ei, where Xi is a variable and E is an extended

xpath expression) X[i, j, k] = M [i, j, k] in the order of k, and return the whole ordered set

rec(A,B) as the output, where variable X[A,B, n] represents the final result (lines 14-15). In

line 15, the following redundant equations are pruned from rec(A,B): 1) X[i, j, k] = ∅; 2)
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X[i, j, k] = ‘X[i′, j′, k′]’; and 3) the variables that do not contribute to processing the variable

X[A,B, n].

Example 4.1: Consider again the query //An on the dtd graph D1 of Fig. 2(a). Starting

from A1 and ending with A4 (A1//An), for n = 4, CycleEX returns an extended xpath query as

follows (suppose nodes A1, A2, A3, and A4 in D1 are associated with numbers 1, 2, 3, and 4,

respectively):

X[1, 3, 2] = ‘X[1, 3, 1] ∪X[1, 2, 1]/X[2, 3, 1]’, (3)

X[1, 4, 2] = ‘X[1, 4, 1] ∪X[1, 2, 1]/X[2, 4, 1]’, (4)

X[1, 4, 4] = ‘X[1, 4, 2] ∪X[1, 3, 2]/X[3, 4, 2]’, (5)

where X[1, 2, 1] = 1/2, X[1, 3, 1] = 1/3, X[1, 4, 1] = 1/4, X[2, 3, 1] = 2/3, X[2, 4, 1] = 2/4, and

X[3, 4, 2] = 3/4.1 The output of CycleEX produces an extended xpath query that contains 3

“∪”-operators and 6 “/”-operators. Note: the “/” appearing in Eq. (3), Eq. (4), and Eq. (5) is

used to concatenate two variables, and is not a “/”-operator in the extended xpath expression.

For example, consider ‘X[1, 2, 1]/X[2, 3, 1]’ (Eq. (3)). Here, X[1, 2, 1] = 1/2 indicates a path

from 1 to 2, and X[2, 3, 1] = 2/3 indicates a path from 2 to 3. Node 2 appears in both X[1, 2, 1]

and X[2, 3, 1], and concatenates the two variables. Similarly, X[1, 2, 1]/X[2, 3, 1] indicates an

extended xpath expression 1/2/3.

In contrast, CycleE gives an extended xpath expression of X[1, 4, 4] = 1/4 ∪ 1/2/4 ∪ (1/3 ∪

1/2/3)/4 with 3 “∪”-operators and 7 “/”-operators. 2

Example 4.1 illustrates how CycleEX works. Next, we also show CycleE (polynomial)

outperforms CycleEX (exponential), in terms of the number the “/”-operators.

Example 4.2: Consider the query //An on the dtd graph Dn, which consists of: (a) nodes

Ai for i ∈ [1, n], where the root is A1; (b) edges (Ai, Aj) for all i, j ∈ [1, n] and i < j. Starting

from A1 and ending with An (A1//An), CycleEX returns an extended xpath query (a list of

equations) with Θ(n2) “/”-operators, while CycleE gives an extended xpath expression with

Ω(2n) “/”-operators. Indeed, when CycleEX is used, only one “/”-operator, appearing on the

right side of the equation for X[1, i, j], where 1 ≤ j < i ≤ n, will be executed. In total, there are

n · (n− 1)/2 ∈ Θ(n2) “/”-operators. Consider CycleE. Let f(n) be the number of “/”-operators

in the output of CycleE on the input dtd graph Dn. We can establish the following recursive

relationship from line 12 in Algorithm CycleE:

f(2) = 1;

f(3) = f(2) + 2;

f(4) = f(2) + f(3) + 3;

... ... ...

f(n) = f(2) + f(3) + ... + f(n− 1) + (n− 1);

1Based on the pruning rule of 2), the X[1, 2, 1] = ‘X[1, 2, 0]’ is pruned and X[1, 2, 1] = 1/2 produced by
Algorithm CycleEX is used. The equation of X[2, 4, 3] = ‘X[2, 4, 2] ∪ X[2, 3, 2]/X[3, 4, 2]’ will be pruned following
the pruning rule of 3), because it does not contribute to the processing of X[1, 4, 4].
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Thus f(n) = n + (n− 1) + 2 · (n− 2) + 22 · (n− 3) + ... + 2i−1 · (n− i) + ... + 2n−4 · 3 ∈ Ω(2n). 2

Moreover, in contrast to CycleE, Algorithm CycleEX has the following nice properties.

Theorem 4.1: Given a dtd D with n element types and element types A,B in D, CycleEX

finds a query rec(A,B) in extended xpath in O(n3log n) time, and moreover, when evaluated at

any A-element, rec(A,B) is equivalent to //B for all dtds that contain D. 2

Proof: For the complexity, CycleEX computes at most n3 +n equations, and each equation is of

O(log n) size (for encoding the four variables, and there are n3 +n variables in total). Each step

of the inner-most loop takes at most O(log n) time. From this the complexity bound follows.

We next show that rec(A,B) is equivalent to //B for all dtds that contain D. More

specifically, let D′ be an arbitrary dtd that contains D, and σ be the mapping that, given any

instance T of D′, extracts a subtree V of T that is an instance of D, as specified in Section 3.

Let v be an A element in V , where σ maps v to an A element σ(v) in T . We need to show that

a node u′ can be reached from σ(v) via rec(A,B) in T iff there exists a node u in V such that

u′ = σ(u) and u can be reached from v via rec(A,B) in V .

To show this, first observe that a regular expression X (A,B) can be derived from rec(A,B)

by removing variables as described in Section 2. We claim the following: ρ is a path from A to

B in D iff ρ is a word in X (A,B). This can be easily verified by showing ρ is a path from A to

B without going through any node larger than k iff ρ ∈M [A,B, k], by induction on k.

This claim suffices. Indeed, for any xml tree T and any A element σ(v) in T , a node u′ can

be reached from σ(v) in T via rec(A,B) iff the path ρ from σ(v) to u′ in T is a word in X (A,B).

By the claim and the definition of σ, this happens iff ρ is in D and there exists a node u in V

such that u′ = σ(u) and u can be reached from v via the same path ρ in V . 2

4.2 Translation Algorithm

We next present an algorithm for translating xpath queries of the fragment of Section 2 over a

dtd D to extended xpath queries that are equivalent over all dtds that contain D.

The algorithm, referred to as XPathToEXp, is based on dynamic programming: for each

sub-query p of the input query Q and each pair of element types A,B in D, it computes a

local translation from xpath p to an equation Xp(A,B) = x2e(p,A,B), where Xp(A,B) is a

variable and x2e(p,A,B) is an extended xpath expression, such that x2e(p,A,B) is equivalent

to p w.r.t. A and B over any dtd D′ that contains D (recall the notion from Section 3).

Composing the local translations one will get the rewriting EQ =
⋃

B∈D

XQ(r,B) from Q, where

r is the root type of D. For each local translation x2e(p,A,B) the algorithm “evaluates” p over

the sub-graph of the dtd graph GD rooted at A, substituting extended xpath expressions over

element types for wildcard ∗ and descendants //, by incorporating the structure of the dtd

into x2e(p,A,B). This also allows us to “optimize” the xpath query by capitalizing on the dtd

structure: certain qualifiers in p can be evaluated to their truth values and thus be eliminated

during the translation, just by checking the structure of D.

To conduct the dynamic-programming computation, Algorithm XPathToEXp uses the

following variables. First, it works over a list L that is a postorder enumeration of the nodes

in the parse tree of Q, such that all sub-queries of a sub-query p (i.e., its descendants of p in

Q’s parse tree) precede p in L. Second, all the element types of the dtd D are put in a list
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Algorithm XPathToEXp

Input: an xpath query Q over a dtd D.
Output: an extended xpath query EQ that is equivalent to Q over all dtds that contain D.

1. compute the ascending list L of sub-queries in Q;
2. compute the list N of all the types in D;
3. for each p in L do
4. for each A, B in N do
5. x2e(p, A, B) := ∅; reach(p, A) := ∅;

6. for each p in the order of L do
7. for each A in N do
8. case p of
9. (1) ǫ: x2e(p, A, B) := ǫ for all B ∈ N ; reach(p, A) := {A};

10. (2) B: if B is a child type of A
11. then x2e(p, A, B) := B; reach(p, A) := {B};
12. else x2e(p, A, B) := ∅; reach(p, A) := ∅;

13. (3) ∗: for each child type B of A in D do
14. x2e(p, A, B) := B; reach(p, A) := reach(p, A) ∪ {B};

15. (4) p1/p2: for each C in reach(p1, A) and each B in reach(p2, C) do
16. x2e(p, A, B) := Xp1

(A, C)/Xp2
(C, B); reach(p, A) := reach(p, A) ∪ {B};

17. (5) ǫ//p1: /* reach(A, ǫ//), rec(A, B) are precomputed, with Xr(A, B) = rec(A, B) */
18. for each C in reach(A, ǫ//) and each B in reach(C, p1) do
19. x2e(p, A, B) := Xr(A, C)/Xp1

(C, B); reach(p, A) := reach(p, A) ∪ {B};

20. (6) p1 ∪ p2: x2e(p, A, B) := Xp1
(A, B) ∪Xp2

(A, B) for all B ∈ D;
21. reach(p, A) := reach(p1, A) ∪ reach(p2, A);
22. (7) p′[q]:
23. for each B in reach(p′, A) do
24. RewQual ([q], B); /* RewQual ([q], B) returns x2e([q], B, B) and X[q](B, B) */
25. if x2e([q], B, B) = [ǫ] /* [q] holds at B */
26. then x2e(p, A, B) := Xp′(A, B); reach(p, A) := reach(p, A) ∪ {B};
27. else if reach([q], B) 6= [∅] /* [q] is not false at B */
28. then x2e(p, A, B) := Xp′(A, B)[X[q](B, B)]; reach(p, A) := reach(p, A) ∪ {B};

29. optimize x2e(p, A, B) by removing ∅ using ∅ ∪E = E, E1/∅/E2 = ∅;

30. EQ := {XQ =
⋃

B∈reach(Q,r)

XQ(A.B)}; /* r is the root of D */

31. EQ := EQ ∪ {Xp(A, B) = x2e(p, A, B) | p ∈ L, A ∈ N, B ∈ N} ∪ {rec(A, B) | A ∈ N, B ∈ N};
32. return EQ;

Figure 8: Rewriting algorithm from xpath to extended xpath

N . Third, for each sub-query p in L and each pair of types A,B in N , we use x2e(p,A,B) to

denote the local translation of p at A, which is an extended xpath expression. Furthermore, we

use a variable Xp(A,B) which will be used in the equation Xp(A,B) = x2e(p,A,B), such that

Xp(A,B) can be used instead of x2e(p,A,B) whenever the latter is needed. Finally, we also use

reach(p,A) to denote the types in D that are reachable from A via p. Abusing this notation, we

use reach([q], A) for a qualifier [q] to denote whether or not [q] can be evaluated to false at an A

element, indicated by whether or not x2e([q], A,A) is [ǫ].

Algorithm XPathToEXp is given in Fig. 8. It computes EQ as follows. It first enumerates the

list L of sub-queries in Q and the list N of element types in D, as well as initializes x2e(p,A) to

the special query ∅ and reach(p,A) to empty set for each p ∈ Q and A ∈ N (lines 1–5). Then, for

each sub-query p in L in the topological order and each element type A in N , it computes the

local translation x2e(p,A,B) (lines 6–28), bottom-up starting from the inner-most sub-query
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Procedure RewQual ([q], A)

Input: an xpath qualifier [q] and an element type A in a dtd D.
Output: an extended xpath query x2e[q], A, A) equivalent to [q] at A elements over dtds that contain D.

1. case [q] of
2. (a) [p1]: XPathToEXp (p1); /* XPathToEXp computes x2e(p1, A, B) and reach(p1, A) */
3. if reach(p1, A) = ∅
4. then x2e([q], A, A) := ∅;
5. else if ǫ is in x2e(p1, A, B)
6. then x2e([q], A, A) := ǫ;
7. else for each B ∈ reach(p1, A) do
8. x2e([q], A, A) := x2e([q], A, A) ∪Xp1

(A, B);

9. (b) [text() = c]: x2e([q], A, A) := text() = c;

10. (c) [q1 ∧ q2]: RewQual (q1, A); RewQual (q2, A);
11. x2e([q], A, A) := optimize(X[q1](A, A) ∧X[q2](A, A));

12. (c) [q1 ∨ q2]: RewQual (q1, A); RewQual (q2, A);
13. x2e([q], A, A) := optimize(X[q1](A, A) ∨X[q2](A, A));

14. (e) [¬q1]: RewQual (q1, A);
15. x2e([q], A, A) := optimize(¬Xq1

(A, A));

16. E[q] := {Xq1
(A, A) = x2e([q1], A, A) q1 is a sub-query of q};

17. prune and return E[q];

Figure 9: Rewriting algorithm from qualifiers

of Q. To do so, it first computes x2e(pi, Bj , B) for each (immediate) sub-query pi of p at each

possible dtd node Bj under A (i.e., Bj in reach (p,A)); then, it combines these x2e(pi, Bj , B)’s

to get x2e(p,A,B). The details of this combination are determined based on the formation of p

from its immediate sub-queries pi, if any (cases 1-7). These cases are illustrated as follows.

First, when p is empty path ǫ, element type C, wildcard ∗ or descendants-or-self //, namely,

cases (1)–(3) and (5), x2e(p,A,B) and reach(p,A) are determined by the dtd D alone regardless

of the input query Q; thus it can be precomputed for each A,B, once and for all, and made

available to XPathToEXp. We include these cases (cases (1)-(3)) in Fig. 8 for ease of reference

(lines 9-14).

When p = p1/p2 (case (4)), for each C reached via p1 from A, XPathToEXp assembles

x2e(p1, A,C) and x2e(p2, C,B) for each B reached via p2 from C to precisely represent paths from

A to B in D. Furthermore, variables Xp1
(A,C) and Xp2

(C,B) are used instead of x2e(p1, A,C)

and x2e(p2, C,B) to avoid that x2e(p,A,B) has an exponential size.

Similarly, in the case p = ǫ//p1 (case (5)), XPathToEXp assembles x2e(p1, A,C) and

x2e(p2, C,B) for each C reached via ǫ// and each B reached via p1 from C. Here x2e(ǫ,A,C) is

essentially X[A,C, n], the variable in rec(A,C) representing the final result. Note that rec(A,C)

is precomputed by Algorithm CycleEX, and is also added into EQ in line 31.

When p = p1 ∪ p2 (case (6)), for each B in D, XPathToEXp simply computes x2e(p1, A,B) ∪

x2e(p2, A,B). However, for the same reason given for case (4), Xp1
(A,B) and Xp2

(A,B) are

used instead of x2e(p1, A,B) and x2e(p2, A,B)

When p comes with a qualifier, i.e., when p = p′[q] (case (case (7)), it invokes a procedure

RewQual to translate [q]. Procedure RewQual may evaluate [q] to a truth value (ǫ for true and ∅

for false) in certain cases based on the structure of the dtd D alone. If so, XPathToEXp simply

drops [q] in x2e(p,A,B), or leaves x2e(p,A,B) unchanged (i.e., ∅) if RewQual returns false.
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At the end of the iteration, each x2e(p,A,B) is optimized by removing ∅, which returns an

empty set over any xml tree, as described in Section 2. Finally, XQ is defined to be the union

of x2e(Q, r,B) for all B ∈ reach(Q, r), and the equations of the extended xpath query are put

together into EQ as the output of the algorithm (lines 29-32).

Procedure RewQual is shown in Fig. 9. It translates qualifiers [q] into an extended xpath

query, based on the structure of q. Furthermore, it “evaluates” q over the dtd and gets the

truth value of [q] if it can be determined based on the dtd structure alone. For example, when

q is a path p, it concludes that [q] is false if no node can be reached from A via p, and true if ǫ is

contained in p, i.e., the current node is in the “result” of the query p. For Boolean operations,

it invokes procedure optimize (not shown) that determines whether q1 ∧ q2, q1 ∨ q2 and ¬q1 can

be evaluated to true or false. For q1 ∧ q2, for example, optimize evaluates it to true if both q1

and q2 are ǫ, and to false if one of q1 and q2 is ∅; similarly for q1 ∨ q2 and ¬q1.

Example 4.3: Recall the xpath query Q2 from Example 2.2. Observe that the algorithm of [27]

cannot handle this query over the dept dtd of Fig. 1 (a). In contrast, XPathToEXp translates

Q2 to the extended xpath query EQ2
below:

XQ2
= dept/course[Xcourse course/prereq/course[cno=”cs66”] ∧

¬ Xcourse project ∧ ¬ takenBy/student/Xqualified course[cno=”cs66”]]

Let ic, jp, and kq be the number assigned to course, project, and quantified, respectively,

and let n be the number of nodes in the dtd of Example 2.2. Here, Xcourse course =

X[ic, ic, n], obtained by computing rec(course, course); Xcourse project = X[ic, jp, n], obtained

by computing rec(course,project); and Xqualified course = X[kq, ic, n], obtained by computing

rec(qualified, course).

The algorithm of Section 5 can then translate EQ2
to equivalent relational queries. 2

The result below tells us that Algorithm XPathToEXp computes extended xpath queries in

low polynomial time, as desired.

Theorem 4.2: Each xpath query Q over a dtd D can be rewritten to an extended xpath

expression EQ in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|) time, such that EQ is equivalent to Q over all

dtds that contain D, and that the size of EQ is bounded by O(|D|3 ∗ |Q| ∗ log|D|). 2

Proof: For the complexity, observe the following. (a) Algorithm XPathToEXp produces an

extended xpath query with O(|D|2 ∗ |Q|) many variables and O(|D|2 ∗ |Q|) many equations,

each consisting of at most two variables and thus takes O(log(|D||Q|) space (to encode the

variables). (b) In addition, rec(A,B) for ‘//’ computed by Algorithm contains O(|D|3) many

equations, which takes O(|D|3 ∗log|D|) space. Putting these together, the extended xpath query

produced takes no more than O(|D|3 ∗ log|D| ∗ |Q|) space. (c) Each step of the inner-most loop

of Algorithm XPathToEXp takes at most O(|D|2 ∗ log|Q| ∗ log|D|) time, where log|Q| ∗ log|D|

is for writing the variables involved. Thus the algorithm takes no more than O(|D|3 ∗ log|D| ∗

|Q| ∗ log|D|) time.

We show that EQ is equivalent to Q over all dtds that contain D, by induction on the

structure of Q. For the base cases, i.e., when Q is ǫ, A, ∗ and //, the statement trivially holds.

In particular, the argument for // is given in the proof of Theorem 4.1.
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For the inductive step, assume that the statement holds for sub-queries p1, p2 of Q, i.e.,

x2e(pi, A,B) is equivalent to pi w.r.t. A and B for all A,B ∈ D and i = 1, 2. We show that the

statement holds for p1/p2. Proofs for the other cases are similar.

Let D′ be an arbitrary dtd that contains D, and σ be the mapping that, given any instance

T of D′, extracts a subtree V of T that is an instance of D, as specified in Section 3. Let v be

an A element in V , where σ maps v to an A element σ(v) in T . We need to show that a node

u′ can be reached from σ(v) via x2e(p1/p2, A,B) in T iff there exists a node u in V such that

u′ = σ(u) and u can be reached from v via p1/p2 in V .

First, for any node u in V reached from v via p1/p2, there must be a node w in V such that w

is reached from v via p1 and u is reached from w via p2. Assume w is labeled C. Then obviously

C ∈ reach(p1, A). By the induction hypothesis and the definition of σ, there exist w′, u′ in T

such that w′ = σ(w), u′ = σ(u); moreover, w′ can be reached from σ(v) via x2e(p1, A,C) and u′

can be reached from w′ via x2e(p2, C,B). Thus from the definition of x2e(p1/p2, A,B) and the

semantics of xpath, it follows that u′ can be reached from σ(v) via x2e(p1/p2, A,B) in T .

Conversely, for any node u′ in T reached from σ(v) via x2e(p1/p2, A,B), by the definition

of x2e(p1/p2, A,B) and the semantics of xpath, there must be a node w′ in T such that w is

reached from σ(v) via x2e(p1, A,C) and u′ is reached from w′ via x2e(p2, C,A), where w′ is

labeled C. By the induction hypothesis for p1, there exists w in V such that w′ = σ(w), and w

can be reached from v via p1. Moreover, by the definition of σ, C ∈ reach(p1, A). Then by the

induction hypothesis for p2, there exists u in V such that u′ = σ(u) and u can be reached from

w via p2. By the semantics of xpath, it follows that u can be reached from v via p1/p2 in V . 2

Observe the following. First, extended xpath queries capture dtd recursion and xpath

recursion in a uniform framework by means of the general Kleene closure E∗. The use of

variables makes it possible to translate xpath queries in polynomial time, in contrast to the

exponential blowup of query translation into regular xpath [15]. Second, during the translation,

algorithm XPathToEXp conducts optimization leveraging the structure of the dtd. Third, Kleene

closure is only introduced when computing rec(A,B); thus there are no qualifiers within a Kleene

closure E∗ in the output extended query. Fourth, both |Q| and |D| are far smaller than the data

(xml tree) size in practice. Finally, as remarked earlier, Algorithm XPathToEXp also provides

query answering ability for xpath queries over certain virtual xml views.

5 From Extended XPath Expressions to SQL

In this section we present an algorithm, Algorithm EXpToSQL, for rewriting extended xpath

expressions into equivalent sql queries with the simple lfp operator. Together with Algorithm

XPathToEXp given in the last section, these provide a solution for answering xpath queries on

xml data stored in relations. We also discuss optimization of the produced sql queries.

5.1 Translation Algorithm

Consider a mapping τ : D → R, where D is a dtd and R is a relational schema, such that its

associated data mapping τd shreds xml trees of D into databases of R. Given an extended xpath

expression EQ over D, Algorithm EXpToSQL computes a sequence Q′ of equivalent relational

queries with the simple lfp operator Φ such that for any xml tree T of D, EQ(T ) = Q′(τd(T )).

We write Q′ in the relational algebra (ra), which can be easily coded in sql.
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More specifically, Q′ is a list of the form Re ← e2s(e), where e is an sub-expression of the

extended xpath expression EQ, Re is a temporary table which is used in later queries, and e2s(e)

is the ra query equivalent to e. The list Q′ is properly ordered such that if e is a sub-expression

of e′, then Re ← e2s(e) precedes Re′ ← e2s(e′) in Q′, i.e., when e2s(e) is needed, the query has

already been evaluated and its result is available in Re, which can be directly used in e2s(e′).

Algorithm EXpToSQL suffices to translates the query produced by Algorithm XPathToEXp

into equivalent sql queries. To see this, observe the following. First, the equations in the

extended xpath query returned by Algorithm XPathToEXp can be sorted as (Xp1
= Ep1

, . . .,

Xpm = Epm), where pi’s are sub-queries of the input query Q such that all sub-queries of a

sub-query p precede p, with pm = Q. In other words, Xpi
only appears in Epj

if i < j. We can

apply Algorithm EXpToSQL to Ep1
, . . . , Epm one by one in this order, creating a temporary table

Rpi
for each e2s(Epi

). For each occurrence of Xpi
in Epj

, we simply use Rpi
in e2s(Epj

). Thus it

suffices for EXpToSQL to translate extended xpath expressions Epi
. Second, the query returned

by XPathToEXp is equivalent to the xpath query Q over all dtds that contain D. Thus it is

equivalent to Q over D since D contains itself. Putting these together, we have that EXpToSQL

and XPathToEXp translate the xpath Q over D to equivalent sql queries over R.

We show Algorithm EXpToSQL in Fig. 10. The algorithm takes an extended xpath expression

EQ over the dtd D as input, and returns an equivalent sequence Q′ of ra queries with the lfp

operator Φ as output. The algorithm is based on dynamic programming: for each sub-expression

e of EQ, it computes e2s(e), which is the ra query translation of e; it then associates e2s(e) with

a temporary table Re and increments the list Q′ with Re ← e2s(e). More specifically, e2s(e)

is computed by assembling e2s(ei) where ei’s are its immediate sub-queries. Thus upon the

completion of the processing one will get the list Q′ equivalent to EQ. To do this, the algorithm

first finds the list L of all sub-expressions of EQ and topologically sorts them in ascending order

(line 1). Then, for each sub-query e in L, it computes e2s(e) (lines 3–24), bottom-up starting

from the inner-most sub-query of EQ, and based on the structure of e (cases (1)-(12)).

As subtle issue is that the lfp operator Φ supports (E)+ but not (E)∗ (where (E)∗ means

repeating E zero or more times, while (E)+ indicates repeating E at least once). Thus (E)∗

needs to be converted to ǫ ∪ (E)+. To simplify the handling of ǫ, we assume a relation Rid

consisting of tuples (v, v, v.val) for all nodes (IDs) v in the input xml tree except the root r.

Note that Rid is the identity relation for join operation: R 1 Rid = Rid 1 R = R for any

relation R. With this we translate (E)∗ to Φ(R) ∪ Rid, where R codes E, and Rid tuples will

be eliminated in a later stage. We rewrite ǫ into Rid just to simplify the presentation of our

algorithm; a more efficient translation is adopted in our implementation.

More specifically, EXpToSQL handles different cases of e as follows.

(Case 2) It rewrites a label A to the corresponding relation RA.

(Case 3) It replaces each occurrence of variable X with its corresponding temporary table RX .

From the discussion above one can see that for each X appearing in an expression Epj
, X = Epi

has already been processed and a table RX has been associated with e2s(Epi
).

(Case 4) Concatenation is coded with projection Π and join 1.

(Cases 5, 11) Union and disjunction are encoded with union ∪ in relational algebra.

(Case 6) Kleene closure (E)∗ is converted to the lfp operator Φ, as remarked above.
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Algorithm EXpToSQL

Input: an extended xpath expression EQ over a dtd D.
Output: an equivalent list Q′ of ra queries over R, where τ : D →R.

1. compute the ascending list L of sub-expressions in E;
2. Q′ := empty list [ ];

3. for each e in the order of L do
4. case e of
5. (1) ǫ: e2s(e) := Rid;

6. (2) A: e2s(e) := RA;

7. (3) X : e2s(e) := RX ; /* RX is a temporary table for storing E where X = E */

8. (4) e1/e2: let R1 = e2s(e1), R2 = e2s(e2);
9. e2s(e) := ΠR1.F,R2.T,R2.V (R1 1R1.T=R2.F R2);

10. (5) e1 ∪ e2: let R1 = e2s(e1), R2 = e2s(e2);
11. e2s(e) := R1 ∪R2;

12. (6) E∗: let R = e2s(e);
13. e2s(e) := Φ(R) ∪Rid;

14. (7) e1[q]: let R1 = e2s(e1), Rq = e2s(q);
15. e2s(e) := ΠR1.F,R1.T,R2.V (R1 1R1.T=Rq.F Rq);

/* returns R1 tuples that connect with R2 tuples */

16. (8) [e1]: e2s(e) := e2s(e1);

17. (9) e1[text() = c]: let R1 = e2s(e1);
18. e2s(e) := σR1.V =cR1; /* select tuples t of R1 with t.V = c */

19. (10) [q1 ∧ q2]: let R1 = e2s(q1); R2 = e2s(q2);
20. e2s(e) := R1 ∪R2 \ ((R1 \R2) ∪ (R2 \R1)); /* e2s(e) = R1 ∩R2; */

21. (11) [q1 ∨ q2]: let R1 = e2s(q1); R2 = e2s(q2);
22. e2s(e) := R1 ∪R2;

23. (12) e1[¬q]: let Rq = e2s(q), R1 = e2s(e1);
24. e2s(e) := R1\ ΠR1.F,R1.T,R1.V (R1 1R1.T=Rq.F Rq);

/* only R1 tuples not connecting to any Rq tuple */

25. Q′ := (Re ← e2s(e)) :: Q′; /* add e2s(e) to Q′ */

26. e2s(EQ) := σF=′ ′e2s(EQ); /* select nodes reachable from root */
27. Q′ := e2s(EQ) :: Q′;
28. optimize Q′ by extracting common sub-queries;
29. return Q′;

Figure 10: Rewriting algorithm from extended XPath to SQL

(Case 10) Conjunction is coded with set intersection implemented with union ∪ and set difference

\ in relational algebra.

(Qualifiers) An expression with qualifier e = e1[q] is converted to a ra query e2s(e) that returns

only those e2s(e1) tuples t1 for which there exists a e2s(q) tuple t2 with t1.T = t2.F , i.e., when

the qualifier q is satisfied at the node represented by t1.T (case 6). For example, it converts [e1]

to e2s(e1) when e1 is an extended xpath expression (case 7). There are, however, two special

cases. First, it rewrites e1[¬q] to a ra query e2s(e) that returns only those e2s(e1) tuples t1

for which there exists no e2s(q) tuple t2 such that t1.T = t2.F , i.e., when the qualifier q is not

satisfied at the node t1.T (and hence [¬q] is satisfied at t1.T (case 11)); this captures precisely

the semantics of negation in xpath. Second, it rewrites e = e1[text() = c] in terms of selection

σ that returns all tuples of e2s(e1) that have the text value c.
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F T

d1 c1

c1 c2

c2 c3

p1 c4

s2 c5

c1 c5

c2 c4

(a) R

F T

c1 c2

c1 c3

c1 c4

c1 c5

· · · · · ·

(b) Rγ

F T

d1 p1

d1 p2

(c) Rf

Table 3: Intermediate and final results of dept//project.

In each of the cases above, the list Q′ is incremented by adding Re ← e2s(e) as the head of

Q′ (line 25). After the iteration it yields σF=′ ′e2s(EQ) (line 26), which selects only those nodes

reachable from the root of the xml tree, removing unreachable nodes including those introduced

by Rid. It also optimizes the sequence Q′ of ra queries by eliminating empty set and extracting

common sub-queries (details omitted from Fig. 10), and returns the cleaned Q′ (lines 28–29).

Example 5.1: Consider the xpath query Q1 = dept//project over the dept dtd of Fig. 1 (a).

Over the simplified dtd is Fig. 1 (b), Q1 becomes Rd//Rp. A possible equivalent ra translations

Q′
1 has been given in Example 3.2, which includes a single lfp operation Rγ = Φ(R)∪ΠT,T (Rc),

where R = Rcc ∪ Rcsc ∪ Rcpc. When evaluated over the relational database of Fig. 1 (which

encodes an xml tree of the dept dtd), Q′
1 produces R, Rγ , and the final result as shown in

Table 3 (a), (b) and (c), respectively.

As another example, recall the xpath query Q2 from Example 2.2, and its extended

xpath query translation XQ2
from Example 4.3, which contains Xcourse course (= X[ic, ic, n]),

Xcourse project (= X[ic, jp, n]), and Xqualified course (= X[kq, ic, n]) computed by Algorithm CycleEX.

Given XQ2
, the EXpToSQL algorithm generates the ra translation below:

Xcourse course/prereq/course[cno =′′ cs66”] : σcno=“cs66”(Rcc 1 Rc)

takenBy/student/Xqualified course[cno =′′ cs66”] : σcno=′′cs66”(Rs 1 Rqc)

Suppose the results of Xcourse course, Xcourse project, and Xqualified course are stored in Rcc, Rcp, and

Rqc, respectively.

Note that Q2 is of the form (with a complex qualifier) dept/course[q1 ∧ ¬q2 ∧ ¬q3], which

is handled by our algorithms by treating it as Q1
2 = dept/course[q1], Q2

2 = Q1
2[¬q2] and

Q2 = Q2
2[¬q3]. Therefore, Q1

2 ← Rd 1 Rc 1 R1, Q2
2 ← Q1

2 \ (Q1
2 1 Rcp), and XQ2

becomes

Q2
2\(Q

2
2 1 R2) where projections are omitted. In contrast, the algorithm of [27] cannot translate

xpath queries of this form to relational queries. 2

The corollary below confirms that our translation algorithms provide an effective solution for

answering xpath queries over (possibly recursive) dtds by means of traditional rdbms.

Corollary 5.1: Each xpath query Q over a dtd D can be rewritten to an equivalent sequence

of sql queries (with the lfp operator) in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|) time. 2

Proof: It is easy to verify the following. (a) Given an input extended xpath expression EQ,

Algorithm EXpToSQL takes O(|EQ|) time to compute a sequence Q′ of sql queries (with the

lfp operator). The size of Q′ is also O(|EQ|). (b) The sql queries Q′ are equivalent to EQ,

i.e., for any xml tree T of D, EQ(T ) = Q′(τd(T )). This can be verified by induction on

the structure of EQ. Recall from Theorem 4.2 that given an input xpath query Q over D,
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Algorithm XPathToEXp computes an extended xpath query EQ equivalent to Q over all dtds

that contain D. The query EQ can be computed in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|) time, and its

size is in O(|D|3 ∗ |Q| ∗ log|D|). Putting these together, we have that the sql queries Q′ can be

computed from Q by using XPathToEXp followed by EXpToSQL in O(|D|3 ∗ log|D| ∗ |Q| ∗ log|Q|)

time. Furthermore, the size of Q′ is in O(|D|3 ∗ |Q| ∗ log|D|). 2

Observe the following. First, algorithm EXpToSQL shows that the simple lfp operator Φ(R)

suffices to express xpath queries over recursive dtds; thus there is no need for the advanced

sql’99 recursion operator. Second, the total size of the produced sql queries is bounded by a

low polynomial of the sizes of the input xpath query Q and the dtd D. Finally, the algorithms

XPathToEXp and EXpToSQL can be easily combined into one; we present them separately to

focus on their different functionality.

5.2 Optimization: Pushing Selections into the lfp Operator

Algorithms XPathToEXp and EXpToSQL show that sql with the simple lfp operator is powerful

enough to answer xpath queries over recursive dtds. While certain optimizations are already

conducted during the translation, other techniques, e.g., sophisticated methods for pushing

selections/projections into the lfp operator [2, 1, 5, 4, 6] can be incorporated into our translation

algorithms to further optimize generated relational queries.

We next show how to push selections into lfp. Consider an xpath query Q3 = Rd[id =

a]/Rc//Rp. To simplify the discussion, assume that our algorithms rewrite Q3 into R1 ← Qd

and R2 ← lfp(R0), where Qd and lfp(R0) compute Rd[id = a] and Rc//Rp, (i.e., rec(Rc, Rp)),

respectively. While R1 1 R2 yields the right answer, we can improve the performance by pushing

the selection into the lfp computation such that it only traverses “paths” starting from the Rc

children of those Rd nodes with id = a. Recall from Eq. (2) that one can specify a predicate C

on the join between RΦ and R0 in lfp, where R0 is the input relation and RΦ is the relation

being computed by the lfp (Section 3; supported by connectby of Oracle and with...recursion

of IBM DB2). That is, R0
Φ ← R0, Ri

Φ ← Ri−1
Φ ∪ (Ri−1

Φ ⊲⊳C R0), and finally, RΦ ← Rm
Φ , where

Rm
Φ = Rm+1

Φ , i.e., the fixpoint. Here C = RΦ.F ∈ πT (R1) ∧ Ri−1
Φ .T = R0.F . (‘∈’ denotes in in

sql), i.e., besides the equijoin RΦ.T = R0.F we want the F (from) attribute of RΦ to match

the T (to) attribute of R1. Then, each iteration of the lfp only adds tuples (f, t), where f is a

child of a node in πT (R1).

Similarly the selection in Rd//Rc/Rp[id=c] can be pushed into lfp(R0) for rec(Rd, Rc). Let

R1 be the relation found and the lfp join condition be: Ri−1
Φ .F = R0.T ∧RΦ.T ∈ πF (R1). Then

the lfp only returns tuples of the form (f, t), where t is the parent of a node in πF (R1).

In general, given an extended xpath expression R1 1 lfp(R0) (or lfp(R0) 1 R1), where R1

is associated with a selection condition, we can push the selection into lfp along the same lines

as above. Let us denote the query resulted from this as push(R1, R0).

Below we identify general cases where the push operation can be applied. We may decompose

a list R̄ of ra queries and employ the push operation as follows:

(i) by union: R̄ = R1 1 lfp(R0) ∪ R′
1 1 lfp(R0), and we can rewrite R̄ to equivalent yet

more efficient R̄ = push(R1, R0) ∪ push(R′
1, R

′
0);
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Figure 11: dtd Graphs

(ii) by conjunction: R̄ = R1 1 lfp(R0) 1 R′
1 1 lfp(R0); in this case we can rewrite R̄ to

R̄ = push(push(R1, R0) ⊲⊳ R′
1, R

′
0);

(iii) by nest: R̄ = R2 1 lfp(R1 1 lfp(R0)), and we can rewrite it to R̄ =

push(R2, push(R1, R0)).

In particular, R̄ = R2 1 R1 1 lfp(R0) and R̄ = R2 1 lfp(R1 1 R0) can be optimized

following cases (ii) and (iii) above. Here we assume that there may exist arbitrary selection

condition on R1 or R′
1. In fact, we can push selections into lfp even when there are no explicit

user-given selection conditions. Consider, for example, R11
1 R12

1 · · · 1 R1n 1 lfp(R0).

By first computing joins R11
1 R12

1 · · · 1 R1n followed by projection on R1n , namely,

πR1n
(R11

1 R12
1 · · · 1 R1n), we can also push this query into lfp(R0) and thus speed up

the computation of the fixpoint. As will be seen in Section 6, this optimization is effective.

Other Optimization: Besides the push operation, several other optimization techniques can

be used to improve the rewritten sql queries. Observe that in our generated relational queries,

all joins and unions are outside of the lfp operator, as opposed to embedding joins/unions in the

blackbox of the operator with...recursive. As a result, one can capitalize on rdbms to optimize

those joins/unions. Indeed, making use of relational optimizers is one of the reasons for one to

want to push the work to rdbms before xml query optimizers become as sophisticated as their

rdbms counterparts. Furthermore, our translation framework makes it easy to accommodate

all existing techniques in commercial rdbms [36, 21]; in particular, multi-query optimization

techniques (e.g., [39]) can be easily incorporated into our framework to optimize a sequence of

sql queries produced by our algorithms.

XML Reconstruction: It is worth mentioning that our rewriting algorithms can be easily

extended such that they not only find ancestor/descendant pairs, but also preserve the path

information between each pair. A simple way to do so is to use an additional attribute P in lfp

Φ() such that the P attribute keeps track of the path information by concatenating edges when

tuples are joined. Both DB2 and Oracle support such a string concatenation operator.

6 A Performance Study

To verify the effectiveness of our rewriting and optimization algorithms, we have conducted a

performance study on evaluating xpath queries using an rdbms with three approaches:

• the SQLGen-R algorithm proposed in [27],
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• our rewriting algorithms by using Tarjan’s method (referred to as CycleE of Fig. 6) to find

rec(A,B), i.e., paths from node A to B in a dtd graph, and

• our rewriting algorithms by using CycleEX of Fig. 7 to compute rec(A,B).

We experimented with these algorithms using a simple yet representative dtd and two complex

dtds from real world. The simple dtd is depicted in Fig. 11 (a) (2 cross cycles). The two real-

life dtds are (1) a 4-cycle dtd extracted from BIOML (BIOpolymer Markup Language [7]),

as shown in Fig. 11 (b); and (2) a 9-cycle dtd extracted from GedML (Genealogy Markup

Language [20]), given in Fig. 11 (c).

While testing several different types of xpath queries, our performance study focuses on the

evaluation of // because // is the only operator in xpath queries that, in the presence of recursive

dtds, leads to Kleene closures and therefore lfp in rdbms, and is a dominant factor of xpath

query evaluation. Two considerations on query evaluation are given below. First, as shown in

our rewriting algorithms, // is translated into a sequence of projection, join and union, along

with lfp. The evaluation of this sequence should be isolated from other operators that do not

contribute to the evaluation of //. Second, the non-recursive operators in xpath queries are

translated into selection, projection, join and union that the existing relational query processing

techniques can support, and is beyond the scope of this evaluation.

Our experimental results demonstrate that our rewriting algorithms with CycleEX outperform

the other two in most cases.

Implementation. We have implemented a prototype system supporting SQLGen-R, CycleE and

CycleEX, using Visual C++, denoted by R, E and X, respectively, in all the figures. SQLGen-R

rewrites a query with the with...recursive operator, while CycleE and CycleEX translate a query to

a sequence of sql queries. We run a batch to execute these rewritten sql queries. We conducted

experiments using IBM DB2 Enterprise 9 on a single 2.8GHz CPU with 1GB main memory. We

did not compare SQLGen-R with ours on Oracle, because Oracle does not support the sql’99

recursion. The queries output ancestor-descendant pairs.

Testing Data: Testing data were generated using IBM xml Generator (http://www.

alphaworks.ibm.com). The input to the IBM xml Generator is a dtd file and a set of

parameters. We mainly control two parameters, XL and XR, in order to study the impacts

of the shape of xml trees. Here XL is the maximum number of levels in the resulting xml tree.

If a tree goes beyond XL levels, it will add none of the optional elements (denoted by * or ? in

the dtd) and only one of each of the required elements (denoted by + or with no option); XR

controls the maximum number of occurrences of child elements in the presence of the ∗ or +

option. In other words, the number of children of each element of a type defined with this option

is a random number between 0 and XR. Together XL and XR determine the shape of an xml

tree: the larger the XL value, the deeper the generated xml tree; and the larger the XR value,

the wider the xml tree. The default values used in our testing for XL and XR are 4 and 12,

respectively. The default number of elements in a generated xml tree is 120,000. There is a need

to control the sizes of xml trees to be the same in different settings for comparison purposes,

and thus excessively large xml trees generated were trimmed. For the other parameters of the

Generator, we used their default settings.
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Relational Database. The generated xml data was mapped to a relational database using

the shared-inlining technique [43]. Indexes were generated for all possible joined attributes.

Experimental Study. We conducted five sets of experiments. (1) We tested four xpath

queries: a query with //, a twig join query, a query with ¬ and //, and a query with ¬,

∨, ∧ and //. The testing was done using different databases (fixing the database size while

varying the relation sizes). (2) In the second set of experiments we evaluated the effectiveness

of our optimization method by pushing selections into the lfp operator. (3) We tested the

scalability of our generated sql queries w.r.t. different database sizes using a query containing

//. Experiments (1) – (3) were conducted with the simple cross-cycle dtd graph. (4) We tested

several xpath queries with different dtds, which are subgraphs of the real-life dtds BIOML

using the same database. The main difference between (1) and (4) is that the former tested

the same queries with different databases, and the latter tested different queries with the same

database. (5) Finally, we examined the numbers of operators (lfp, etc) in the sql queries

generated by CycleE and CycleEX, respectively.

6.1 Exp-1: Evaluation of Selective Queries

In this study, over the simple cross-cycle dtd (Fig. 11 (a)), we tested the following four xpath

queries:

• Qa = a/b//c/d (with //),

• Qb = a[//c]//d (a twig join query),

• Qc = a[¬ //c] (with ¬ and //), and

• Qd = a[¬ //c ∨ (b ∧ //d)] (with ¬, ∨, ∧ and //).

The XPathToEXp algorithm translates these xpath queries into four extended xpath expressions,

namely, Q′
a = a/Xb c/d, Q′

b = a[Xa b/c]/Xa c/d, Q′
c = a[¬Xa b/c], and Q′

d = a[¬Xa b/c ∨ (b ∧

Xa c/d)], respectively. Here, Xb c, Xa b, and Xa c will be computed by rec(b, c), rec(a, b), and

rec(a, c) using CycleE and CycleEX to test CycleE and CycleEX, respectively. Since the last

three xpath queries cannot be handled by SQLGen-R, we tested SQLGen-R by generating a

with...recursive query for each rec(A,B) in our translation framework.

We used an xml tree with a fixed size of 120,000 elements. The same queries were evaluated

over different shapes of xml trees controlled by the height of the tree (XL) and the width of

tree (XR). Since an xml tree with different heights and/or widths results in different sizes of

relations in a database, even though the database size is the same, the same translated sql

query may end up having different query-processing costs. We report elapsed time (seconds) for

each query in Fig. 12. For a single query, one figure shows the elapsed time while varying XL

from 8 to 20 with XR = 4, whereas the other figure shows the elapsed time while varying XR

from 4 to 10 with XL = 12.

Fig. 12 (a), (c), (e), and (g), show the elapsed time while varying XL, when XR is fixed. The

xml trees become higher, but the distribution of widths in the xml trees remains unchanged,

while XL increases. The elapsed time for all the three approaches increases. As can be seen from

the figures, the performance of SQLGen-R and CycleE is significantly affected while XL increases.

However, the performance CycleEX is marginally affected. CycleEX noticeably outperforms

SQLGen-R and CycleE.
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Figure 12: Processing time for cross cycles (Fig. 11 (a)).

Fig. 12 (b), (d), (f), and (h), show the elapsed time while varying XR, when XL is fixed. In

other words, the average number of children per element in an xml increases, and the height

of the xml tree remains unchanged, while XR increases. More precisely, the xml generator

generates an xml tree with more elements at the leaf level for a larger XR value. The percentages

of the leaf nodes in the xml trees are 50%, 67%, 74%, 80%, when XR = 4, XR = 6, XR = 8, and

XR = 10, respectively. With such distributions, SQLGen-R performs better, while XR increases.

It is difficult to analyze the with...recursive, but it can be because the most results are computed

in a few iterations. CycleEX is marginally affected by the changes of XR values, it shows similar

performance while XR increases. CycleE performs worst due to the large number of operations

it needs to perform.
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Figure 13: Pushing Selection (XR = 8 and XL = 12)

6.2 Exp-2: Pushing Selections into lfp

We tested two xpath queries with selection conditions: Qe = a[id = Ai]/b//c/d and Qf =

a/b//c/d[id = Di]. For each query we generated two sql queries, one with selections pushed

into lfp and the other without. We evaluated these queries using datasets of the dtd of

Fig. 11 (a), fixing the size of the datasets while varying the size of the set selected by the

qualifiers of Ai and Di. Figures 13(a) and 13(b) show the results. In Fig. 13(a), we vary the

number of qualified a elements from 100 to 50,000, while in Fig. 13(b), we vary the number of

qualified d elements from 100 to 50,000. It is shown that as expected, performance improvement

by pushing selections into the lfp operator is significant.
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Figure 14: Scalability Test (XR = 4 and XL = 16)

6.3 Exp-3: Scalability Test

Figure 14 demonstrates the scalability of our algorithms by increasing the dataset sizes, for an

xpath query a//d over the cross-cycle dtd (Fig. 11 (a)). We set XL = 16, because the default

XL = 12 is not large enough for the xml generator to generate such large datasets. When the

parameters are fixed, the xml generator can generate different sizes of xml databases but with

the similar distributions in terms of heights/widths. The xml dataset size increases to 480,000

elements from 60,000 elements. We find that CycleEX outperforms both SQLGen-R and CycleE

noticeably, and SQLGen-R outperforms CycleE. When the dataset size is 480,000, the costs of

CycleE and SQLGen-R are 2.4 times and 1.7 times of the cost of CycleEX, respectively. This

shows that when dataset is large, our optimization technique is effective enough to outperform

with...recursive, because it can reduce the number of lfp operators and unnecessary joins and

unions.

6.4 Exp-4: Complex Cycles (Extracted from Real-Life DTDs)

We next show the results of testing xpath queries on the extracted 4-cycle BIOML dtd.

29



gene dna clone locus

(a)

gene dna clone locus

(b)

gene dna clone locus
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Figure 15: Different dtd graphs extracted from BIOML

Case Query n-Cycles dtd Graph

2a gene//locus 2 Fig. 15 (a)

2b gene//locus 2 Fig. 15 (b)

2c gene//dna 2 Fig. 15 (b)

3a gene//locus 3 Fig. 15 (c)

3b gene//locus 3 Fig. 15 (d)

4a gene//locus 4 Fig. 11 (b)

4b gene//dna 4 Fig. 11 (b)

Table 4: xpath queries over different dtd graphs extracted from BIOML
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Figure 16: xpath queries on the extracted BIOML dtds

We tested xpath queries over the extracted dtd graphs from BIOML. We considered four

subgraphs of the BIOML dtd of Fig. 11 (b) in order to demonstrate the impact of different

dtds on the translated sql queries. These subgraphs are shown in Fig. 15. The xpath queries

tested on these extracted dtd graphs are summarized in Table 4.

All these xpath queries were run on the same dataset which was generated using the largest

4-cycle dtd graph extracted from BIOML (Fig. 11 (b)) with XR = 6 and XL = 16. Unlike Exp-

1, we did not trim the xml trees generated by the IBM xml Generator. The generated dataset

consists of 1,990,858 elements, which is 16 times larger than the dataset (120,000 elements) used

in Exp-1. The sizes of relations for gene, dna, clone and locus are 354,289, 703,249, 697,060 and

236,260, respectively.

We show the query processing results in Fig. 16. We find that CycleEX outperforms SQLGen-R

and CycleE in all the cases, except case 2b. In case 4a, for example, SQLGen-R needs to use 7 joins

and 7 unions in each iteration; CycleE needs to process 6 join, 2 lfp and 3 union operators; and

CycleEX uses 5 join, 1 lfp and 4 union operators. CycleEX significantly outperforms SQLGen-R

and CycleE because less number of join and lfp are used, while it uses more union operators

than others. The cost of union is comparatively small, if one relation involved in the union

operator is indexed.
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DTD n m c CycleE CycleEX

LFP ALL LFP ALL

Cross (Fig. 11(a)) 4 5 2 5/9/6 38/78/51 2/2/2 7/11/8

BIOMLa (Fig. 15(a)) 4 5 2 8/14/12 80/124/104 3/5/4 12/22/16

BIOMLb (Fig. 15(b)) 4 6 3 6/14/11 50/94/75 2/5/3 9/20/14

BIOMLc (Fig. 15(c)) 4 6 3 8/14/12 80/124/104 3/5/4 12/22/16

BIOMLd (Fig. 15(d)) 4 7 4 8/14/12 88/134/112 3/5/4 13/23/17

GedML (Fig. 11(c)) 5 11 9 6/22/16 154/222/188 2/8/4 12/27/19

Table 5: Number of Operations (min/max/average)

6.5 Exp-5: Number of Operations

We show the numbers of operations both in the resulting extended xpath expressions obtained

from CycleEX and CycleE and in the resulting relational algebra (RA) in Table 5. Empirically,

the lengths of the resulting extended xpath expressions and sql are polynomial, even though in

theory, the sizes of resulting extended xpath expressions are exponential, in the worst case, in

terms of the size of |GD|, based on [13].

In Table 5, the first column lists six dtd used in the testing. The second, third, and fourth

columns indicate the numbers of nodes (n), edges (m), and simple cycles (c), respectively, in

the dtd graphs. For each dtd, we enumerate all possible pairs of two nodes in the dtd, and

select one as a start node (A) and the other as an end node (B). For each pair of A and B, we

use CycleE and CycleEX to compute the extended xpath expression representing all paths from

A to B, and then determine the number of operations in the resulting relational algebra (RA).

They are shown in two groups in Table 5. The LFP and ALL show the numbers of lfp’s and all

operations used in extended xpath expressions in the format of (min/max/average). CycleEX

outperforms CycleE in terms of the numbers of lfp and all operations used in all the cases.

7 Related Work

This is an extension of the earlier work [16] by including (a) the notion of extended xpath

(Section 2) and its application in query translation and query answering (Section 3), (b) revised

translation algorithms (Sections 4 and 5), in particular a new algorithm for handling the

descendant axis of xpath; and (c) an extensive experimental study.

There has been a host of work on querying xml using an rdbms, over xml data stored in an

rdbms or xml views published from relations (e.g., [11, 12, 33, 18, 27, 24, 42, 41]; see [28] for

an excellent survey). However, as observed by [28], with the exception of [27], no algorithm has

been published for handling recursive xml queries over recursive dtds for schema-based xml

storage or in the context of xml publishing. Closest to our work is [27], which proposed the first

technique to rewrite recursive path queries over recursive dtds to sql with the sql’99 recursion

operator. We have remarked the differences between [27] and this work in Sections 1 and 3.

At least three approaches have been proposed to querying xml data stored in relations via

dtd-based shredding. One approach is based on middleware and xml views, e.g., XPERANTO

[42, 41] and SilkRoute [18]. In a nutshell, it provides clients with an xml view of the relations

representing the xml data; upon receiving an xml query against the view, it composes the

query with the view, rewrites the composed query to a query in a (rich) intermediate language
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supported by middleware, and answers the query by using the computing power of both the

middleware and the underlying rdbms. However, this approach is tempered by the following.

First, it is nontrivial to define a (recursive) xml view of the relational data without loss of

the original information. Second, it requires middleware support and incurs communication

overhead between the middleware and the rdbms. Third, as observed by [27], no algorithms

have been developed for handling recursive queries over xml views with a recursive dtd.

Another approach is by providing an algorithm for rewriting xml queries into sql

(extended with a recursion operator), which is the approach adopted by this work. To

this end, translation and optimization techniques have been proposed for translating XSLT

queries [24], XQuery [11, 12, 29, 33] and (recursive) path queries [27]. While the algorithms

of [24, 11, 12, 29, 33] cannot handle query translation in the presence of recursive dtds, their

optimization techniques by leveraging, e.g., integrity constraints [12, 29], virtual generic schema

and query normalization [33], dynamic interval encoding [11] and aggregation handling [24]

are complementary to our work. Some of these, along with techniques for query pruning

and rewriting [17], minimizing the use of joins [30], multi-query [39] and recursive-query

optimization [40], can be incorporated into our translation framework.

The third approach is based on indexing structures, which associate each node with, e.g.,

the pair of preorder traversal and range numbers, where the latter is the maximum number of

descendants of the node (e.g., [32, 44]). One can preserve the indexes when storing xml data

in relations, and translate certain recursive xpath queries to sql without using any recursion

operator by capitalizing on the indexes. This approach is hampered by the following problems.

First, the indexes introduce additional overhead when storing and querying the data. Worse

still, the cost of the maintenance of the indexes may become prohibitive expensive when the

data is frequently changed. In contrast, our approach does not incur extra cost in the dynamic

context. Second, it does not help query answering for xml views, as opposed to this work.

There has also been recent work on query answering for virtual xml views in the native xml

setting [15, 14]. This issue was studied in [14] for nonrecursive xml views, and it was revisited

for recursive xml views in [15]. As remarked earlier, it was shown in [15] that for recursive

xml views, query rewriting is not closed for xpath, but it is closed for regular xpath; however,

the rewriting incurs an exponential-time lower bound even for nonrecursive xml views. To

avoid the exponential blowup, [15] proposed a notion of automata to represent the rewritten

regular xpath queries, and developed algorithms for evaluating these automata on xml data.

Unfortunately, those automata cannot be directly translated into sql with lfp. In contrast, this

work introduces extended xpath and shows that extended xpath expressions can be translated

into equivalent sql queries. Regular xpath was introduced in [34]. Extended xpath proposed

by this work is an extension of regular xpath by allowing bindings of variables and sub-queries.

Surveys on recursive and cyclic query processing strategies include [5, 25]. For OODBs, [26]

introduced techniques for processing cyclic queries restricted to 1-cycle queries. [9] proposed

optimization techniques for generalized path expressions based on OO algebraic transformation

rules. These techniques are not directly applicable to query translations from xml to sql.
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8 Conclusion

We have proposed a new approach to translating a practical class of xpath queries over (possibly

recursive) dtds to sql queries with a simple lfp operator found in many commercial rdbms.

The novelty of the approach consists in (1) a notion of extended xpath expressions capable of

capturing dtd recursion and xpath recursion in a uniform framework; (2) an efficient algorithm

for translating an xpath query over a recursive dtd to an equivalent extended xpath expression

that characterizes all matching paths, without incurring exponential blowup; and (3) an efficient

algorithm for rewriting an extended xpath expression into an equivalent sequence of sql queries;

These provide not only the capability of answering important xpath queries within the immediate

reach of most commercial rdbms, but also the query answering ability for certain xml views.

Several extensions are targeted for future work. We recognize that several factors affect

the efficiency of the sql queries produced by our translation algorithms, and we are currently

developing a cost model in order to provide better guidance for xpath query rewriting. We are

also exploring techniques for multi-query and recursive-query optimization [39, 40] to simplify

the sql queries produced. Finally, we plan to extend our algorithms to handle more complex

xml queries, over xml data stored in an rdbms or (virtual) xml views of relational data.
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