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1. INTRODUCTION

A central technical issue for the exchange, migration and integration of XML data is to
find mappings from documents of a source XML (DTD) schema to documents of a target
schema. While one can certainly define XML mappings in a query language such as XQuery
or XSLT, such queries may be large and complex, and in practice it is often needed that XML
mappings (1) guarantee type-safety and (2) preserve information.

It is clearly desirable that the document produced by an XML mapping conforms to a
target schema, guaranteeing type safety. But this may be difficult to check for mappings
defined in XQuery or XSLT [Alon et al. 2001]. Further, since in many applications one

y
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does not want to lose the original information of the source data, a mapping should also
preserve information. Criteria for information preservation include: (1) invertibility [Hull
1986]: can one recover the source document from the target? and (2) query preservation:
for a particular XML query language, can all queries on source documents in that language
be answered on target documents? We now illustrate these concepts with an example.

Example 1.1: Consider two source DTDs
���������

and a target DTD
�

represented as graphs
in Fig. 1 (we omit the 	�

� –PCDATA– child under cno, credit, title, year, term, instructor, gpa
in Fig. 1(c)). A document of

� �
contains information of classes taught at a school, and a

document of
� �

contains student data of the school. The user wants to map the document
of

� �
and the document of

� �
to a single instance of

�
, which is to collect data about

courses and students of the school in the last five years. Here we use edges of different
types to represent different constructs of a DTD, namely, solid edges for a concatenation
type (a unique occurrence of each child), dashed edges for disjunction (one and only one
child), and star edges (edge labeled ‘ � ’) for Kleene star (zero or more child). �

In this example, invertibility asks for the ability to reconstruct the original class and stu-
dent documents from an integrated school document, while query preservation requires the
ability to answer XML queries posed on class and student documents using the school doc-
ument. Two natural questions are: (a) can one determine whether or not an XML mapping
is information preserving? (b) is there an efficient method to find information-preserving
XML mappings?

While type safety and information preservation are clearly desirable, an additional fea-
ture is the ability to map documents of DTDs that have different structures. A given source
DTD may differ in structure from a desired target DTD. This is typical in data integration,
where the target DTD needs to accommodate data from multiple sources and thus cannot
be similar to any of the sources; in Fig. 1, e.g., the school DTD is quite different from the
class, student DTDs.

Background. While information preservation has been studied for traditional database
transformations [Abiteboul and Hull 1988; Hull 1986; Miller et al. 1993; 1994], to our
knowledge, no previous work has considered it for XML mappings. In fact, a variety of
tools and models have been proposed for finding XML mappings at schema- or instance-
level [Doan et al. 2001; Madhavan et al. 2001; Melnik et al. 2002; Melnik et al. 2003;
Miller et al. 2001; Milo and Zohar 1998]; however, none has addressed invertibility and
query preservation for XML. Most tools either focus on highly similar structures, or adopt a
strict graph similarity model like bisimulation (see,, e.g., [Abiteboul et al. 2000]) to match
structures, which is incapable of mapping DTDs with different structures such as those
shown in Fig. 1, and can ensure neither invertibility nor query preservation w.r.t. XML
query languages. Another issue is that it is unclear that mappings found by some of these
tools guarantee type safety when it comes to complex XML DTDs.

Contribution. To this end we study information preserving XML mappings, and make the
following contributions.

First, as criteria for information preservation we revisit the notions of invertibility and
query preservation [Abiteboul and Hull 1988; Hull 1986; Miller et al. 1993; 1994] for XML
mappings. While the two notions coincide for relational mappings w.r.t. relational calcu-
lus [Hull 1986], we show that they are in general different for XML mappings w.r.t. XML
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cno title type
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*
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(a) Source schema ���

student
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*

*
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db

(b) Source schema � y

school

courses students

history current

course

basic category

student

ssn takingname gpa

*

classcreditcno mandatory advanced

regular projectseminarlab

required

gpaprereq

**

*

*

semester
*

title year instructorterm

(c) Target schema �

Fig. 1. Example: source and target schemas

query languages. Furthermore, we show that it is undecidable to determine whether or
not an XML mapping defined in a simple fragment of XQuery (or XSLT) is information
preserving.

Second, to cope with the undecidability result, we introduce an XML mapping frame-
work based on a novel notion of schema embeddings. A schema embedding is a natural
extension of graph similarity in which an edge in a source DTD schema may be mapped to
a path, rather than a single edge, in a target DTD. For example, the source DTDs

� �
and���

of Fig 1 can both be embedded in
�

, while there is no sensible mapping from them to�
based on graph similarity. From a schema embedding, an instance-level XML mapping

can be directly produced that has all the properties mentioned above. In particular, such
mappings are invertible, query preserving w.r.t. regular XPath (an extension of XPath in-
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troduced in [Marx 2004]), and ensure type safety. As with schema-mapping techniques for
other data models, by automatically producing this mapping the user is saved from writ-
ing and type-checking a complex mapping query. Moreover, we show that the inverse and
query rewriting functions for the mapping are efficient.

Third, we provide algorithms to compute schema embeddings. We show that it is NP-
complete to find an embedding between two DTDs, even when the DTDs are nonrecursive.
Thus algorithms for finding embeddings are necessarily heuristic. A building block of our
algorithms is an efficient algorithm to find a local embedding for individual productions in
the source schema. Based on this, we develop three heuristic algorithms to compute em-
beddings. The first two algorithms repeatedly attempt to assemble local embeddings into
a schema embedding (using a random or quality-specific order of the local embeddings,
respectively), and when conflicts arise, attempt to generate new, non-conflicting local em-
beddings. The third algorithm generates a candidate pool of local embeddings, and then
uses a heuristic solution to Maximum-Independent-Set to assemble a valid schema embed-
ding.

Finally, we have implemented our algorithms and conducted an experimental study
based on mapping schemas taken from real-life and benchmark sources to copies of these
schemas with varying amounts of introduced noise. These experiments verify the accu-
racy and efficiency of our heuristics on schemas up to a few hundred nodes in size, and
suggest that schema embeddings will lead to a promising tool for automatically computing
information preserving XML mappings.

To the best of our knowledge, this work is the first to study information preservation in
the XML context, and it yields a systematic and effective approach to defining and finding
information preserving XML mappings.

Organization. The remainder of the paper is organized as follows. Section 2 reviews DTDs
and XPATH, and revisits invertibility and query preservation for XML mappings. Section 3
investigates basic properties of invertibility and query preservation, establishing equiva-
lence, separation and complexity results for XML mappings. Section 4 defines the notion
of schema embedding and shows that schema embedding guarantees information preser-
vation. Section 5 shows that the problem of finding schema embedding is intractable, and
provides efficient heuristic algorithms for computing schema-embedding candidates. Sec-
tion 6 presents our experimental study. Related work is discussed in Section 7, followed
by research issues for future work in Section 8.

2. DTDS, XPATH, INFORMATION PRESERVATION

In this section we review DTDs and (regular) XPATH, and revisit information preserva-
tion [Hull 1986; Miller et al. 1994] for XML.

2.1 XPath and Regular XPath

We consider a class of regular XPath queries proposed and studied in [Marx 2004], denoted
by ��� and defined as follows:

����� �	��

��
�����������������
������ 
!�#"$� 
���%&
��(' )�*,+
)-��� �.� 
!�����/�����0���1� ‘ 2 ’ 
��4365�78�97�3;:<���<�>=?
A@1)B

)DCE)F
G)DHI)KJ

where L is the empty path (self), M is a label (element type), ‘ N ’ is the union operator, ‘ O ’
is the child-axis, and � is the Kleene star; P is an �Q� expressions, R is a natural number,
ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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� is a string constant, and � ��� ��� are the Boolean negation, conjunction and disjunction
operators, respectively.

An XPath fragment of �Q� , denoted by � , is defined by replacing P�� with P(O O�P in the
definition above, where O O is the descendant-or-self axis.

A (regular) XPath query P is evaluated at a context node � in an XML tree 	 , and its
result is the set of nodes (ids) of 	 reachable via P from � , denoted by ��
 
 P
� � .
2.2 DTDs

We consider DTDs of the form ������� ��� �
��� , where ����� is a finite set of element types;
�

is
a distinguished type in ����� , called the root type;

�
defines the element types: for each M

in ����� , � � M � is a regular expression of the form:� ��� � ����� 
Q�B
! y +�J�J�J0+" $# 
! y&% J�J�J %  '# 
! %
where 	�

� denotes PCDATA, L is the empty word, ( is a type in ����� (referred to as a child

of M ), and ‘ ) ’, ‘
�
’ and ‘ � ’ denote disjunction (with *,+.- ), concatenation and the Kleene

star, respectively. We refer to M0/ � ��M � as the production of M . Note that this form of
DTDs does not lose generality since any DTDs

�
can be converted to

�'1
of this form (in

linear time) by introducing new element types, and (regular) XPath queries on
�

can be
rewritten into equivalent (regular) XPath queries on

� 1
in PTIME [Benedikt et al. 2005].

Schema Graphs. We represent a DTD
�

as a labeled graph 243 , referred to as the graph
of

�
. For each element type M in

�
, there is a unique node labeled M in 253 , referred to as

the M node. From the M -node there are edges to nodes representing child types in
� � M � ,

determined by the production M6/ � ��M � of M . There are three different types of edges
indicating different DTD constructs. Specifically, if

� ��M � is ( � �879787 � (;: then there is a
solid edge from the M node to each (=< node; it is labeled with a position R if (>< is the R -th
occurrence of a type ( in

� � M � (the label can be omitted if (=< ’s are distinct). If
� ��M � is

( � ) 78797 )5(;: then there is a dashed edge from the M node to each (=< node (w.l.o.g. assume
that (?< ’s are distinct in disjunction). If

� � M � is (@� , then there is a solid edge with a ‘ � ’
label from the M node to the ( node. Note that a DTD is recursive if its graph is cyclic.
When it is clear from the context, we shall use the DTD and its graph interchangeably, both
referred to as

�
; similarly for M element type and M node.

For example, Fig. 1 shows graphs representing three DTDs, where Figs. 1(a) and 1(c)
depict recursive DTDs.

An XML instance 	 of a DTD
�

is a node-labeled tree that conforms to
�

. That is,
(1) there is a unique node, the root, in 	 labeled with

�
; (2) each node in 	 is labeled

either with an ����� type M , called an M element, or with 	 

� , called a text node; (3) each M
element has a list of children of elements and text nodes such that their labels are in the
regular language defined by

� ��M � ; and (4) each text node carries a string value (PCDATA)
and is a leaf. We denote by AB� �C� the set of all instances of

�
.

A DTD
�

is consistent if it has no useless element types, i.e., each type of
�

has an
instance. In the sequel we only consider consistent DTDs, w.l.o.g. since any DTD

�
can

be converted to a consistent
�D1

in E@��F � F G � time such that AB� �D1H�;I AJ� �D� , by dropping all
useless types from

�
.

2.3 Invertibility and Query Preservation

For XML DTDs
� �

and
�
G , a (data) instance mapping K�LNMOAB� ���8� /PAB� � G

�
is invert-

ible if there exists an inverse KRQ
�
L of KSL such that for any XML instance 	UTVAJ� � �8� ,

ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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K Q
�
L ��KSL � 	 ��� I 	 , where

� ��	 � denotes the result of applying a function (or mapping,
query)

�
to 	 . In other words, the composition KOQ

�
L�� K L is equivalent to the identity

mapping ��� , which maps an XML document to itself.
For an XML query language � , a mapping K&L is query preserving w.r.t. � if there exists a

computable function �0M	� /
� such that for any XML query �0T�� and any 	 T AB� � �8� ,
� ��	 �OI � �
� � ��K L � 	 �"� , i.e., � I � ��� � � KSL .

In a nutshell, invertibility is the ability that the original source XML document can be
recovered from the target document; query preservation w.r.t. � indicates whether or not
all queries of � on any source 	 of

� �
can be effectively answered over K L � 	 � , i.e., the

mapping K L does not lose information of 	 when � queries are concerned.
The notions of invertibility and query preservation are inspired by (calculus) dominance

and query dominance that were proposed in [Hull 1986] for relational mappings and later
studied in [Abiteboul and Hull 1988; Miller et al. 1993; 1994]. In contrast to query domi-
nance, query preservation is defined w.r.t. a given XML query language that does not nec-
essarily support query composition. Invertibility is defined for XML mappings and it only
requires K Q

�
L to be a partial function defined on K�L � AB� ���9�"� .

We say that a mapping KSL M�AB� ���9� / AJ� � G
�

is information preserving w.r.t. � if it is
both invertible and query preserving w.r.t. � .

3. INFORMATION PRESERVATION

In this section we establish basic results for separation and equivalence of the invertibility
and query preservation of XML mappings, as well as complexity of determining whether a
given XML mapping is information preserving.

Invertibility and Query Preservation. It was shown [Hull 1986] that calculus dominance
and query dominance are equivalent for relational mappings. In contrast, invertibility and
query preservation do not necessarily coincide for XML mappings and query languages.
Recall the class � of XPath queries defined in Section 2, which supports neither query
composition, nor identify mapping, nor the ability to navigate a recursive DTD based on
certain patterns that are expressible in terms of the Kleen closure P�� .
Theorem 3.1: There exists an invertible XML mapping that is not query preserving w.r.t. � ;
and there exists an XML mapping that is not invertible but is query-preserving w.r.t. the
class of � queries without position() qualifier. �

PROOF. The proof consists of two parts.
(1) We first show that invertibility does not entail query preservation w.r.t. the XPATH frag-
ment � . Consider a source DTD

� �
and a target DTD

�
G :� y = ����� + � +  +���� +�� y +�� � , where � y is:��� � , ���  +�� ,  �� � % � , ��� � ,���

= ����� + ��� + � � +�� � , where � �
is:��� � , ��� � % � .

The mapping K L M8AB� � � � / AJ� � G
�

is defined such that for any 	 T AB� � � � , the root
� �

of	 is mapped to the root
�
G of K L ��	 � , the M child of

� �
is mapped to the M child of

�
G ; and

inductively, if an M element � in 	 is mapped to an M element � 1 in KSL � 	 � , then the ( �"!
children of � are mapped to the child and the grandchild of � 1 , respectively, and the M child
of the ( node is mapped to the great grandchild of � 1 . Formally, this can be expressed by
the function #%$ 
�& from the edges of 	 to (relative) paths of K&L � 	 � as follows:
ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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��� ��� � � + ���<�F� ��� ��� �,� +  #�G� � ��� ��� �,�$+�� �<�F���0� ��� ��� �  + � �G� ���0�
Obviously KSL is invertible: one can restore the original 	 from K�L ��	 � inductively top-

down from the root
� �

of 	 .
Now consider an � query � I O O ( . An equivalent translation of � over K&L � 	 � is to

find all the elements in the M -chain of K�L � 	 � that are reachable from
�
G via M ���
	

�
. It is

easy to prove that M ���
	
�

is not expressible in � by contradiction, even with the position()
qualifier. Thus KSL is not query preserving w.r.t. � .

(2) We next show that query preservation w.r.t. the XPATH fragment � without position()
qualifier does not entail invertibility. Consider a source DTD

� �
:

� y = ����� + ��� + � y + �6� , where � y is:��� � % , � �6����� .
and assume that the target DTD

�
G is identical to

� �
.

The mapping K L M�AB� � � � / AB� � G
�

is defined such that for any 	VT AB� � � � , the root
� �

of 	 is mapped to the root
�
G of K L ��	 � , the M children of

� �
are mapped to M children of�

G such that there is a bijection from the M children of
���

to the M children of
�
G ; however,

the M -children of
�
G are ordered based on their string values ( 	 

� ).

One can pose the following forms of � queries over 	VT AB� � �9� : L � M � M 
 � � , where � is
a boolean formula defined in terms of atomic formulas of the form text() = ‘ � ’. Since the
identity mapping from � to � yields equivalent queries over K&L ��	 � for these queries, the
mapping KSL is query preserving w.r.t. � . However, K�L is not invertible: one cannot recover
the original order of the M elements of

� �
. �

We identify sufficient conditions for the two to coincide: the definability of the identity
mapping, and query composibility (i.e., for any � � � � G in � , � G � � �

is in � ).
Theorem 3.2: Let � be any XML query language and K&L be a mapping: AB� � �8� / AB� � G

�
.

—If the identity mapping ��� is definable in � and K L is query preserving w.r.t. � , then K L
is invertible.

—If � is composable, KSL is invertible and KRQ
�
L is expressible in � , then K�L is query pre-

serving w.r.t. � . �

PROOF. We prove the two statements as follows.
(1) Suppose that K L is query preserving w.r.t. � . Then there exists a computable function
�UM � / � such that for any � T � and any 	 T AJ� � � � , � � 	 � I � ��� � ��K L ��	 �"� .
Since ��� is in � , we have 	 I ���S� 	 � I � � ��� � ��K L � 	 �"� for any 	 T AB� � � � . That is,
K Q

�
L I � � ��� � � K L , and thus KSL is invertible.

(2) Suppose that � is composable, K�L is invertible and KRQ
�
L is in � . Then define � M	� /
�

to be � ��� �$I � � KRQ
�
L for any � T � . Obviously � is computable. Furthermore, for any

�0T � and 	 T AB� � �8� , � � 	 �CI � ��K Q
�
L ��KSL ��	 �"�$I � ��� � ��K L ��	 �"� . Thus � is an effective

query translation function for � . �
Recall the class ��� of regular XPath queries defined in Section 2. Although the iden-

tity mapping ��� is not definable in �Q� , we show below that query preservation w.r.t. � �
is a stronger property than invertibility: every node in a source document can uniquely
identified by an ��� query on the target document, and thus can be retracted.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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Theorem 3.3: If an XML mapping KSL is query preserving w.r.t. �Q� , then KSL is invertible.
Conversely, there exists K�L that is invertible but is not query preserving w.r.t. � � . �

PROOF. Suppose that KSL M ��� / �
G is query preserving w.r.t. �Q� . We show that

K L is invertible by providing an algorithm for computing KDQ
�
L . Given KSL � 	 � , the algorithm

recovers 	 . It first creates the root
� �

of 	 , which is identical to the root
�
G of KSL � 	 � . It then

recursively expands 	 top-down, until 	 cannot be expanded further. More specifically, for
each node � created for 	 , it recovers the children of � based on its type M , the production
M /�� of M in

� �
, and the query translation function � M � � / � � , as follows. In

particular, we consider a subclass of � � , referred to as � � paths, which are of the form� I�� � O 78797 O � � , where R�� - , � < is of the form M4
 � � , and � is either true or a position()
qualifier. Note that there is a unique � � path � from

� �
to � such that

� � 
 
 � � � is a singleton
set � �	� .
(1) � I M � �879787 � MJ: . For each M?< , define an ��� query �=< I � � � O�M?<�
 P�

� ������
 *D� �DI R � �
and evaluate ��<���K L ��	 �"� at the context node � in K�L ��	 � , where R is the R -th M?< element in
� if it has multiple M?< elements. Since KSL is query preserving and K�L ��	 � is mapped from
an XML tree 	 , � 1 always returns a single node � < . Treat � � �879787 � � : as the children of � ,
and for each �CT 
 - � *�� , proceed to expand the subtree at � < in the same way.
(2) � I M � ) 78797 )-M?: . For each M?< , let �=< I � � � O�MJ< � and evaluate ��<���KSL ��	 �"� at the
context node � in KSL � 	 � . Since KSL is query preserving and K�L � 	 � is mapped from an XML
tree 	 , there exists one and only one � < such that ��<"��K L ��	 �"� returns a single note � < (and
the others return empty). Treat � < as the only child of � and proceed to expand the subtree
at ��< in the same way.
(3) � I (5� . For each natural number R , evaluate � � ��K L � 	 �"� at the context node � in
K L ��	 � , where � � I � � � O ( 
 P�

� ������
 *D� �DI R � � , until it reaches a R � such that � ��� ��K L ��	 �"�DI�
. Since KSL is query preserving and K�L ��	 � is mapped from an XML tree 	 , there ex-

ists one and only one � � returned by � � ��KSL � 	 ��� for each R�� R � , and for any R�� R � ,
� � ��K L � 	 �"�'I �

. Treat � � as the R -th child of � for all R�� R � , and proceed to expand the
subtree at each � � in the same way.
(4) � I 	 

� . Find the string value via � O�� ����� � � .
(5) � I L . Nothing needs be done here.

This process terminates since KSL ��	 � is generated from a finite 	 . One can verify that
	 I K Q

�
L ��KSL � 	 ��� , i.e., the algorithm above indeed computes K Q

�
L . Thus K Q

�
L is computable

and K L is invertible.

To show that invertibility does not necessarily lead to query preservation w.r.t. � � ,
recall the DTDs

� �
and

�
G defined in the proof of Theorem 3.1. Consider a mapping

K L M AJ� � � � / AJ� � G
�

such that for any 	 T AB� � � � , the root
� �

of 	 is mapped to the root�
G of K L ��	 � , the M child of

� �
is mapped to the M child of

�
G ; and inductively, if an M

element � in 	 is mapped to an M element � 1 in K L � 	 � , then the ( �"!
children of � are also

mapped to � 1 , and the M child of the ( node is mapped to the M child of � 1 , such that the
number of M nodes in 	 is the same as that in K�L � 	 � . Obviously, KSL is invertible: given
any KSL ��	 � one can recover 	 such that the number of M nodes in 	 is the same as that in
K L ��	 � , and each M node in 	 has a ( child followed by a

!
child. However, one cannot

translate a query M O�( over
� �

to an equivalent one over
�
G . �
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Information Preserving XML Schema Embedding � 9

Complexity. It is common to find XML mappings defined in XQuery or XSLT. A natural
and important question is to decide whether or not an XML mapping is invertible or query
preserving w.r.t. a query language � . Unfortunately, this is impossible for XML mappings
defined in any language that subsumes first-order logic ( ��E , or relational algebra–RA),
e.g., XQuery, XSLT, even when � consists of projection queries only. Thus it is beyond
reach to answer the question for XQuery or XSLT mappings.
Theorem 3.4: It is undecidable to determine, given an XML mapping K&L defined in any
language subsuming ��E , whether or not (a) K&L is invertible; and (b) KSL is query preserving
w.r.t. projection queries. �

PROOF. We verify this by reduction from the equivalence problem for RA queries. that
is the problem to decide, given two RA queries � � � � G M��

� /�� G , whether or not
� ��� � G , i.e., whether or not for any relational database � � of � �

, � � ��� �BI � G ���
�
. The

equivalence problem is undecidable (cf. [Abiteboul et al. 1995]).
(1) It suffices to show that the invertibility problem is undecidable for relational mappings
defined in RA. Since relational data can be coded in XML and RA queries can be expressed
in ��E over XML trees, the undecidability carries over to XML mappings defined in ��E .

Given two RA queries � � � � G M��
� /	� G , we define a RA mapping 
 M�� ��� � G /� � � � G , as follows:


 = ������� � ����� "��I��� y +�� � �/� , �I��� y +�� � � = ��� y�� � � � " ��� � � � y �
Observe that � � � � G iff � ��� � � � G

�DI �
, i.e., the query always returns an empty set.

We show that 
 is invertible iff � � � � G . If � � � � G , then � �
� � � � G
��I �

. Then

 is the identity query and is certainly invertible. Conversely, if � �! � � G , then there
exists an instance � of � �

such that � ��� � � � G
� ��� � is nonempty. Consider two distinct

instances of � �"� � G : �
�JI ��� � � �
� � � � G

� ��� �"� and � G
I ��� � � � . Since 
 ��� �8�'I 
 ��� G

�DI
��� � � �
� � � � G

� ��� �"� , 
 is not injective and thus is not invertible (there exists no inverse
function for 
 ).

(2) Given two RA queries � � � � G M#�
� /$� G , we use the same RA mapping 
 given

above to show that 
 is query preserving w.r.t. a fixed query iff � �%� � G . Consider a
fixed query � I'& � � . First, suppose that � �(� � G . Then one can define � such that
� ��� � I � . This shows that 
 is query preserving w.r.t. � . Conversely, suppose that
� �  � � G . Suppose, by contradiction, that there is a computable query translation function
� such that � 1$I � ��� � . Recall � � � � G given above. Obviously, � ��� � �) I � ��� G

�
, while

� 1 ��
 ��� � �"�=I � 1 �*
 ��� G
���

. Thus either � ��� � �( I � 1 ��
 ��� � �"� or � ��� G
�( I � 1 ��
 ��� G

�"�
; that

is, � does not translate � to an equivalent query over the target, which contradicts the
assumption above. Thus 
 is not query preserving w.r.t. � . �

The undecidability suggests that we start with languages simpler than XQuery and XSLT
when studying information preserving XML mappings. Indeed, understanding (regular)
XPath query preservation is a necessary step toward a full treatment of XML mappings
defined in XQuery or XSLT, in which XPath is embedded.

4. SCHEMA EMBEDDINGS FOR XML

The negative results in Section 3 tell us that it is already hard to determine whether or not
an XML mapping is information preserving, not to mention finding one. This motivates us
to look for a class of XML mappings that are guaranteed to be information preserving.
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10 � Bohannon, Fan, Flaster and Narayan

We approach this problem by specifying XML mappings at the schema level embeddings,
and providing an automated derivation of instance-level mappings from these embeddings.
Our notion of schema embeddings is novel, and extends the conventional notion of graph
similarity by allowing edges in a source DTD schema to be mapped to a path in a target
DTD with a “larger information capacity”. For example, a STAR edge can only be mapped
to a path with at least one STAR edge.

In this section we define XML schema embeddings, present an algorithm for deriving an
instance-level mapping from a schema embedding, and verify that the resulting mappings
ensure information preservation.

4.1 Schema Level Embeddings

Consider a source XML DTD schema
� � I ��� � ��� � �"� �8� and a target DTD

�
G
I ��� G

���
G
���
G
�
.

In a nutshell, a schema embedding K is a pair of functions ��� � #%$ 
�& � that maps each M type
in � � to a ��� M � type in � G , and each edge ��M � ( � in

� �
to a unique #%$ 
�& ��M � ( � from � ��M �

to ����( � in
�
G , such that the

�
G paths mapped from sibling edges in

� �
are sufficiently

distinct to allow information to be preserved. To define � and #%$ 
�& we first introduce a few
notations.

��� Paths. An ��� path over a DTD
� I ��� ��� ��� �

is an �Q� query of the form � I
� � O 78797 O � � , where R � - , � < is of the form M 
 � � , and � is either true or a position() qualifier,
such that � is a path in

�
and it carries all the position labels on the path. An � � path is

called an AND path (resp. OR path, and STAR path) if it is nonempty and consists of only
solid or star edges (resp. of solid edges and at least one dashed edge, and of solid edges and
at least one edge labeled � ). Referring to Fig. 1(c), for example, basic/class/semester/title
is an AND path as well as a STAR path, and mandatory/regular is an OR path.

Name Similarity. A similarity matrix for
� �

and
�
G is an F � � F � F � G F matrix $ 
 
 of numbers

in the range 
 � � -8� . For any M T � � and ( T � G , $ 
 
8� M � ( � indicates the suitability of
mapping M to ( , as determined by human domain experts or computed by an existing
algorithm, e.g., [Athitsos et al. 2005; Doan et al. 2001; Li and Clifton 2000].

Type Mapping. A type mapping � from
� �

to
�
G is a (total) function from � � to � G ; it

maps the root of
� �

to the root of
�
G , i.e., ��� � � �BI.�

G . A type mapping � is valid w.r.t. a
similarity matrix $ 
 
 if for any M T � � , $ 
 
8��M � � ��M ��� +�� .

Path Mapping. A path mapping from
� �

to
�
G , denoted by K M � � / �

G , is a pair
��� � #%$ 
�& � , where � is a type mapping and # $ 
�& is a function that maps each edge ��M � ( � in���

to an ��� path #%$ 
�& � M � ( � that is from ��� M � to � ��( � in
�
G .

For a particular element type M in � � , we say that K is valid for M if the following
conditions hold, based on the production M / � � ��M � in

� �
:

—if
� � ��M � = ( � �978787 � (�� , then for each � , # $ 
�& ��M � ( < � is an AND path from ��� M � to � ��( < �

that is not a prefix of # $ 
�& ��M � (�� � for any �  I � ;
—if

� � � M � = ( � ) 78787 ) ( � , then for each � , # $ 
�& ��M � (;< � is an OR path from � ��M � to � ��(>< �
that is not a prefix of # $ 
�& ��M � ( � � for any �  I � 2;

—if
� � ��M � = ( � , then # $ 
�& ��M � (;< � is a STAR path;

�
Abusing our normal form of DTDs, an optional type 	 can be specified as, e.g., 
��
	���� ; here ������� 9 
���	�� ;

simply needs to be an OR path since � is not an element type and thus ������� 9 
���� ; is undefined.
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21

Fig. 2. Path mappings for DTDs

—if
� � ��M � = 	�

� , then #%$ 
�& ��M � 	 

� � is an AND path ending with text().

The validity requires a path type condition and a prefix-free condition, which, as will be
seen shortly, are important for deriving the instance-level mapping from K .
Example 4.1: Consider pairs of source (on the left) and target (on the right) DTDs depicted
in Fig. 2, for which a type mapping � is defined as � ��� �CI � 1 for � in � M � ( �"! � , except
in Fig. 2(c) where both � � !=�$I ( 1 and ����( �'I ( 1 . Observe the following. For Fig. 2(a),
there is no valid path embedding from the source DTD to the target; intuitively, ( and

!
must coexist in a source document while only one of ( 1 and

!>1
exists in the target. For

Fig. 2(b), the source cannot be mapped to the target since there are possibly multiple (
elements in the source, which cannot be accommodated by the target. For Fig. 2(c), a valid
embedding is #%$ 
�& ��M � ( �>I ( 1 
 P�

� ������
 *D� �DI - � and #%$ 
�& � M �"!=�=I ( 1 
 P�

� ������
 *D� �DI�� � .
For Fig. 2(d), there is no valid embedding since #%$ 
�& ��M � ( � is a prefix of # $ 
�& ��M �"!=� ,
violating the prefix-free condition. For Fig. 2(e), a valid embedding is #%$ 
�& � M � ( � I
M 1 O�( 1 (by unfolding the cycle once) and #%$ 
�& ��M � !=�CI ( 1 O !>1 . �

Finally, we define XML schema embeddings as follows.

Schema Embedding. A schema embedding from
� �

to
�
G valid w.r.t. a similarity matrix

$ 
 
 is a path mapping K I ��� � #%$ 
�& � from
� �

to
�
G such that � is valid w.r.t. $ 
 
 , and K is

valid for every element M in � � .
Example 4.2: Assume a similarity matrix $ 
 
 such that $ 
 
8� M � M 1 �@I - for all M in the
DTD

� �
of Fig. 1(a) and M 1 in

�
of Fig. 1(c). The source DTD

���
can be embedded in the

target
�

via K �BI ��� � � #%$ 
�& � � defined as follows:
� y (db) = school,

� y (class) = course,
� y (type) = category,� y ( � ) = � /* � : cno, title, regular, project, prereq, ����� */

��� ��� y (db, class) = courses/current/course
��� ��� y (class, cno) = basic/cno
��� ��� y (class, title) = basic/class/semester/title
��� ��� y (class, type) = category
��� ��� y (type, regular) = mandatory/regular
��� ��� y (type, project) = advanced/project
��� ��� y (regular, prereq) = required/prereq
��� ��� y (prereq, class) = course
��� ��� y ( � , ����� ) = text() /* � for cno, title */

Note that #%$ 
�& � ��M � ( � is a path in
�

denoting how to reach � � ��( � from � � ��M � , i.e., the
path is relative to � � � M � . For example, #%$ 
�& � (type, project) indicates how to reach project
from a category context node in

�
, where category is mapped from type in

� �
by � � . Here
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12 � Bohannon, Fan, Flaster and Narayan

the similarity matrix $ 
 
 imposes no restrictions: any name in the source can be mapped to
any name in the target; thus the embedding here is decided solely on the DTD structures.

In contrast, one cannot map
���

to
�

by graph similarity, which requires that node M
in the source is mapped (similar) to ( in the target only if all children of M are mapped
(similar) to children of ( . In other words, graph similarity maps an edge in the source to
an edge in the target. �

The definition of schema embedding can be extended to support further restructuring
“across hierarchies” such that a child ( of a source type M is not necessarily mapped
to a descendant of � ��M � in the target; this can be achieved via, e.g., upward modality
in # $ 
�& ��M � ( � . It is also possible that an AND edge does not have to be mapped to an
AND path. We focus on the main idea of schema embeddings in this paper and defer the
extension to a later publication.

Embedding Quality. There are many possible metrics. In this paper we consider only
a simple one: the quality of a schema embedding K I ��� � #%$ 
�& � w.r.t. $ 
 
 is the sum of
$ 
 
8��M � � ��M �"� for MVT � � , and we say that K is invalid if � is invalid w.r.t. $ 
 
 . We refer to
this metric as ��� $�� ��K � $ 
 
 � .
4.2 Instance Level Mapping

For a valid schema embedding K I ��� � #%$ 
�& � from
� �

to
�
G , we give its semantics by

defining a (data) instance-level mapping K L MRAB� � � � / AB� � G
�
, referred to as the XML

mapping of K .
We define K L by presenting an algorithm that, given an instance 	 � of

� �
, computes an

instance 	 G
I K L ��	 � � of

�
G . In a nutshell, K L constructs 	 G top down starting from the root�

G of 	 G , mapped from the root
� �

of 	 � (recall ��� � �9�>I �
G ). Inductively, for each ��� M �

element � in 	 G that is mapped from an M element � in 	 , K�L generates a distinct � ��( �
node � 1 in 	 G for each distinct ( child � 1 of � in 	 � , such that � 1 is reached from � via
#%$ 
�& � M � ( � in 	 G , i.e., � 1 is uniquely identified by the �Q� path from � . More specifically,
the construction is based on the production M / � � ��M � in

���
as follows.

(1)
��� ��M � is ( � �879787 � (?: . For each child � < of � , KSL creates a node �&< bearing the same id

as � < . These nodes are added to 	 G as follows. For each �=T 
 - � *�� , � < is added to 	 G by
creating # $ 
�& ��M � ( < � emanating from � to � < , such that the path shares any prefix already
in 	 G which were created for, e.g., # $ 
�& ��M � (�� � for � ��� . The definition of #%$ 
�& � � ensures
that � < and � � are not the same node in 	 G , since # $ 
�& ��M � ( < � is not a prefix of # $ 
�& ��M � ( � �
and vice versa.
(2)

� � ��M � is ( � ) 79787 ) (;: . Here � in 	 � must have a unique child � < . For ��< , KSL creates
a node ��< bearing the same id as � < , and adds ��< to 	 G via #%$ 
�& � M � (?< � as above.
(3)

� � ��M � is (@� . By the definition of valid # $ 
�& function, #%$ 
�& � M � ( � is of the form
#%$ 
�& � M � M � � O ( � O # $ 
�& ��( � � ( � , where M � is the first type defined in terms of Kleene star in�
G , i.e.,

�
G ��M

� �DI (5�� . Let 
 � � �878797 � � � � be the list of all the children of � . Then K L creates
� � �879787 � � � bearing the same id’s as � � �878797 � � � , and adds these nodes to 	 G as follows. It
first generates a single #%$ 
�& ��M � M � � from � to an M 1 node � 1 if it does not already exist in
	 G , and for each �CT 
 - � R � , it creates a distinct � -th ( �

child if it is not already in 	 G . From
the � -th (;< node it generates #%$ 
�& ��( � � ( � leading to ��< , in the same way as in (1) above.
Note that the order of the children of � is preserved by K&L .
(4)

� � � M � is 	�

� . The treatment is the same as (1) except the last node of #%$ 
�& � M � 	 

� � in
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	 G is a text node holding the same value as the text node in 	 � .
We repeat the process until all nodes in 	 � are mapped to nodes in 	 G . We finally

complete KSL � 	 � by adding necessary default elements such that K&L � 	 � conforms to
�
G .

Recall from Section 2 that we can assume w.l.o.g. consistent DTDs. Thus for each element
type M in

�
G , we can pick a fixed instance � � of M and use it as M ’s default element. The

choice of default elements is arbitrary since as will be seen shortly, the inverse K Q
�
L of KSL

exists and it can distinguish 	 G nodes mapped from 	 � from default elements.
Example 4.3: Consider the XML mapping K�L of the embedding defined in Example 4.2.
Given an instance 	 � of

� �
of Fig. 1(a), KSL generates a tree 	 G of

�
of Fig. 1(c) as follows:

K L first creates the root school of 	 G , bearing the node id of the root db of 	 � . Then, KSL
creates a single courses child � of school, a single current child � of � , and for each class
child � of db, KSL creates a distinct course child � of � bearing the id of � , such that the
course children of � are in the same order as the class children of db. It then maps the cno,
title, type children of � to cno, title, category descendants of � in 	 G , based on #%$ 
�& � . In
particular, to map title in

� �
, it creates a single class child ��� of the basic element, a single

semester child ��� under ��� (although class is defined with a Kleene star), and then a title
child under ��� . For the category element � mapped from the type child � of � , K L creates
a distinct path advanced/project under � if � has a project child, or a mandatory/regular
path otherwise, but not both. The process proceeds until all nodes in 	 � are mapped to 	 G .
Finally, default elements of history, credit, year, term, instructor and gpa are added to 	 Gsuch that 	 G conforms to

�
. In the last stage, no children of disjunctive types category,

mandatory or advanced are added, and no children are created under history. That is,
default elements are added only when necessary. �

We next show that K L is well defined. That is, given any 	 � in AB� � � � , K L ��	 � � is an XML
tree that conforms to

�
G . This is nontrivial due to the interaction between different paths

defined for disjunction types in the schema mapping K , among other things. Consider, for
example, #%$ 
�& (type, regular) in Example 4.2. The path requires the existence of a regular
child under a mandatory element � , which is in turn a child under a category element � in
an instance of

�
. Thus it rules out the possibility of adding an advanced child under � or

a lab child under � , perhaps requested by a conflicting path in K . However, Theorem 4.1
below shows that the prefix-free condition in the definition of valid #%$ 
�& functions ensures
that conflicting paths do not exist.

Theorem 4.1 also shows that K�L is injective: it maps distinct nodes in 	 � to distinct
nodes in KSL � 	 � � , a property necessary for information preservation. Indeed, K determines
an injective path-mapping function � such that, for each � � path � I M � 
 � � ��O 78797 O�M � 
 � � �
in

� �
from

� �
, � � � � is # $ 
�& � � � � M �9� 
 � � �,O 78787 O #%$ 
�& ��M � Q

� � M � � 
 � � � , an ��� path in
�
G from�

G , by substituting #%$ 
�& � M?< � M?< 	 �9� for each MJ< 	 � in � . Since each node in 	 � is uniquely
determined by an � � path from the root, it follows that K L is injective.
Theorem 4.1: The XML mapping K�L of a valid schema embedding K M � � / �

G is well
defined and injective. �

PROOF. The proof consists of three parts. We first show that � maps distinct � � paths
in

���
from

� �
to distinct �Q� paths in

�
G from

�
G . Then, using this we show that K�L is

injective. Based on this we finally show that K&L is well defined.

(1) We first define a function � that maps �Q� paths from the root
� �

in
���

to ��� paths
ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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from the root
�
G in

�
G . Given an ��� path � I M � 
 � � ��O 79787 O�M � 
 � � � in

���
from

� �
, � � � �

is defined to be #%$ 
�& � � � � M � � 
 � � ��O 78797 O #%$ 
�& � M � Q
� � M � � 
 � � � , an ��� path in

�
G from

�
G , by

substituting #%$ 
�& � M?< � MJ< 	 �8� for each MJ< 	 � in � .
We show that � maps distinct �Q� paths in

� �
from

� �
to distinct ��� paths in

�
G from�

G . Let � � � � G be distinct �Q� paths from
� �

in
���

. Consider the following two cases.
First, � � is a prefix of � G . That is, � G

I � � O � where � is nonempty since � � and � Gare distinct. Then � is mapped to a nonempty � � path in
�
G by the definition of K , and

thus � � � �8�  I � � � G
�
; similarly if � G is a prefix of � � . Second, neither � � is a prefix of � Gnor � G is a prefix of � � . Then there exist � � � 1 � � M4
 � � � ( � 
 � � � and ( G 
 � G � such that � � I� O�M 
 � ��O ( � 
 � � ��O � 1 � , � G

I � O�M4
 � ��O ( G 
 � G ��O �
1
G , and ( � 
 � � � � ( G 
 � G � are the first labels that

differ in � � and � G . Then ( � � ( G are child types of M , M is either a concatenation type or a
disjunction type, and moreover, either ( � � ( G are distinct labels, or �

� �
� G indicate different

positions of the same label. By the definition of schema embedding, neither #%$ 
�& � M � ( � �
is a prefix of #%$ 
�& � M � ( G

�
nor the other way around. That is, # $ 
�& ��M � ( � �CI�� O � � O � � and

#%$ 
�& � M � ( G
�'I�� O � G O

�

G such that
� �

and
�
G are distinct. Thus � � � � �" I � � � G

�
.

(2) From (1) and the definition of K�L it follows that KSL is injective. Indeed, any node in
an XML tree is uniquely determined by an � � path from the root. Thus by the definition
of KSL , any node � in 	VT AB� � �9� is mapped to a distinct node in K�L � 	 � . More specifically,
this obviously holds if the parent of � is of a concatenation or disjunction type or 	 

� ; and
moreover, if the type parent � 1 of � is defined with a Kleene star, the children of � 1 are
mapped to distinct nodes preserving the original order, by the definition of K L .
(3) We next show that KSL is well defined, i.e., for any 	VT AB� � � � , K L � 	 � conforms to

�
G .One possible violation of

�
G may occur when there exists an M -node � in K L ��	 � such that

M is a disjunction type M0/ ( � ) 78797 )N( � , and K L � 	 � forces the presences of both ( <
and ( � children of � . Then there must be two nodes � � � � G in 	 identified by � � paths� � � � G from root over

� �
such that � � I � O�M 
 � �,O � 1 � , � G

I � O�M4
 � ��O � 1G , and � � � � G have
the lowest common ancestor � that is identified by � and mapped to either � by K L or an
ancestor � 1 of � . If � is mapped to � then � must have a disjunction type by the definition
of schema embedding, and thus � � � � G cannot coexist, which contradicts the assumption.
If � is mapped to � 1 , since � � � � G both exist and � is the lowest common ancestor of � � and
� G , � must have a concatenation type M 1 /U( 1� �978787 � ( 1: such that � � � � G are descendants
of the ( 1< � ( 1� children of � ; indeed, M 1 cannot be a Kleene star type since otherwise by the
definition of KSL , � � � � G cannot be mapped to nodes that have a common ancestor � ; and M 1
cannot be a disjunction type since � is the lowest common ancestor of � � � � G . Since both
#%$ 
�& � M 1 � ( 1< � and #%$ 
�& � M 1 � ( � � end up to be suffixes of � O�M 
 � � , it contradicts the definition
of schema embedding since either #%$ 
�& � M 1 � ( 1< � is a prefix of # $ 
�& ��M 1 � ( � � or the other
way around.

Similarly, it can be verified that violations cannot be caused by AND and STAR paths
either. �
4.3 Properties of Schema Embeddings

We have shown that the XML mapping K&L of a valid schema embedding K is guaranteed to
type check. We next show that K�L and K also have all the other desired properties.

Information Preservation. In contrast to Theorem 3.4, information preservation is guar-
anteed by schema embeddings. Recall regular XPath � � from Section 2.
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Theorem 4.2: The XML mapping K�L of a valid schema embedding K M � � / �
G is invert-

ible and is query preserving w.r.t. � � . More precisely, (a) there exists an inverse KOQ
�
L of K L

that, given any KSL � 	 � , recovers 	 in E@��F KSL � 	 � F G � time; and (b) there is a query translation
function � that given any �Q� query � over

���
, computes an �Q� query � �
� � equivalent

w.r.t. KSL over
�
G in E@��F � F F KDF F ��� F � time. �

PROOF. We prove the theorem as follows.
(1) We first show that K L is invertible and query preserving w.r.t. � � . It suffices to define
a query translation function � MG� � / � � . For if it holds, then K L is query preserving
w.r.t. ��� and in addition, by Theorem 3.3 it is also invertible. The translation function �
extends the mapping � on �Q� paths given earlier, by substituting #%$ 
�& ��M � ( � for each edge
��M � ( � in a given ��� query. More specifically, given an �Q� query � over

� �
, � �
� � is

computed by using functions
�

and ��� $��	& defined below. For each element type M in � �
and each sub-query � �

of � ,
—the local translation

� �
� � � M � of � �
at M is an � � query over

�
G such that for any

instance 	 of
� �

and any M element � in 	 , the result of evaluating � �
at � in 	 is the

same as the result of evaluating
� �
� � � M � at � 1 on KSL � 	 � , where � 1 is mapped from � by

K L ;
— ��� $��%& ��� � � M � is the set of element types in

� �
that are reached via � �

when evaluated
at an M element in an instance 	 of

� �
.

More specifically,
� ��� � � M � and ��� $��%& ��� � � M � are defined based on the structure of query

� �
as follows.

(a) If � �
is L , then ��� $��	& �
� � � M �DI �6M � , � �
� � �CI L .

(b) If � �
is ( , then ��� $��%& ��� � � M �DI � ( � , � ��� � � M �CI #%$ 
�& � M � ( � .

(c) If � �
is P(O�� ����� � � , then ��� $��	& �
� � � M �CI � , � ��� � � M �CI � � P � M � O�� �

�	��
 ��
���������� ��� #%$ 
�& ��(
� 	�

� �"� .

(d) If � �
is P � O�P G , then

��� $��%& ��� � � M �DI �
�	��
 ��
�������� � � ���

��� $��%& ��P G
� ( � ,

� ��� � � M �CI � � P � � M � O � �
�	��
 ��
�������� � � ���

� � P G
� ( ��� .

(e) If � �
is P � N&P G , then ��� $��%& ��� � � M � I ��� $��	& � P � � M � N ��� $��%& ��P G

� M � , � ��� � � M � I� ��P � � M � N � ��P G
� M � .

(f) If � �
is P�� , then ��� $��%& ��� � � M �DI � M � N ��� $��%& ��P � M � , � �
� � � M �CI � ��P � � M � � .

(g) If � �
is P 
 � � , then

��� $��%& ��� � � M �DI ��� $��	& � P � M � , � ��� � � M �DI � � P � � M � 
 �
�	��
 ��
���������� ���

� � � � ( � � .

(h) If � �
is 
 P
� , then ��� $��%& ��� � � M �DI ��� $��%& ��P � M � , � �
� � � M �CI � ��P � M � .

(i) If � �
is 
 P(O � � ��� � �DI � � , then

��� $��%& ��� � � M �DI �
,
� ��� � � M �DI � � P � M � O�� �

�	��
 ��
���������� ��� #%$ 
�& � M
� 	�

� �"� .

(j) If � �
is 
 P�

� ������
 *D� �DI R � , then ��� $��%& ��� � � M �DI �

,
� �
� � � M �DI 
 P�

� ������
 *D� �DI R � .
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(k) If � �
is � � , then ��� $��	& �
� � � M �CI � , � ��� � � M �CI 
 � � � � � M � � .

(l) If � �
is �

�D�
� G , then ��� $��%& ��� � � M �CI �

,
� �
� � � M �CI 
 � � � � � M � ��� � � G

� M � � .
(m) If � �

is �
� �

� G , then ��� $��	& ��� � � M �DI �
,
� ��� � � M �DI 
 � � � � � M � ��� � � G

� M � � .
Given these, we define � ��� � to be

� ��� ��� �8�
. One can easily verify that � is indeed

a query translation function such that for any instance 	 of
� �

, � ��	 ��I � ��� � ��K L ��	 �"� ,
again by induction on the structure of � .

(2) For the complexity of the query translation function � , note that F ��� $��	& �
� � M � F is
bounded by F � � F and thus

� ��� � M � is bounded by E@��F � F�F #%$ 
�& F&F � � F � . The computation
of

� ��� � M � and ��� $��%& ��� � M � can be conducted by dynamic programming, and it takes at
most E@��F � F F #%$ 
�& F F � � F � time to compute � ��� � .

The inverse function K Q
�
L is defined along the same lines as the function in the proof of

Theorem 3.3. Given any K L � 	 � in AB� � G
�
, it takes at most E@��F K L � 	 � F G � time to compute the

source instance 	 . �

Example 4.4: The ��� query � below, over
� �

of Fig. 1(a), is to find all the classes that
are (direct or indirect) prerequisites of CS331. It is translated to an � � query � 1 over

�
of Fig. 1(c), which is equivalent w.r.t. the mapping K&L given in Example 4.3, i.e. � ��	 � =
� 1 ��KSL ��	 �"� for any 	 T5AB� � � � , when evaluated on 	 with the root as the context node.
� : class[cno/text()=‘CS331’]/(type/regular/prereq/class) % .
��� : courses/current/course[basic/cno/text()=‘CS331’]/

(category/mandatory/regular/required/prereq/course) % . �
In contrast, the notion of graph similarity ensures neither invertibility nor query preser-

vation w.r.t. ��� . As a simple example, the source and target schemas in Fig. 2(a) are bisim-
ilar by the conventional definition of graph similarity, which does not consider cardinality
constraints of different DTD constructs. However, there exists no instance-level mapping
from the source to the target, not to mention inverse mappings and query translation.

Multiple sources. In contrast to graph similarity, it is possible to embed multiple source
DTD schemas to a single target DTD, as illustrated by the example below. This property is
particularly useful in data integration.
Example 4.5: The embedding K G

I ��� G
� #%$ 
�& G

�
below maps

� �
of Fig. 1(b) to the target

DTD
�

of Fig. 1(c).
� �

(db) = school� �
( � ) = � /* � : student, ssn, name, taking, cno */

��� ��� � (db, student) = students/student
��� ��� � (student,  ) =  /*  : ssn, name, taking */
��� ��� � (taking, cno) = cno
��� ��� � ( � , ����� ) = text() /* � : ssn, name, cno */

Taken together with K � of Example 4.2, this allows us to integrate a course document of� �
and a student document of

� �
into a single school instance of the target DTD

�
. �

In general, given multiple source DTDs
� � �879787 ��� : and a single target DTD

�
, one can

define schema embeddings KS< M � < / �
to simultaneously map

� < to
�

. Their XML
mappings K

�
L �879787 � K :L are invertible and query preserving w.r.t. � � as long as �9< � � � are

pairwise disjoint, where � < is the path mapping function derived from K�< to map �Q� paths
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from root in
� < to ��� paths from root in

�
. The instance-level XML mapping K&L is a

composition of individual K
�
L �978787 � K :L . Here K <L increments the document constructed by

K �L ’s for � � � by modifying default elements or introducing new elements, instead of
constructing a new document of

�
constructed starting from scratch.

Small model property. The result below gives us an upper bound on the length F # $ 
�& ��M � ( � F ,
and allows us to reduce the search space when defining or finding an embedding.
Theorem 4.3: If there exists a valid schema embedding K M � � / �

G , then there exists one
such that for any edge ��M � ( � in

� �
, F #%$ 
�& � M � ( � F � �9RS) - � F � G F , where

�
G
I ��� G

���
G
�"�
G
�
,

and R is the size of the production
�
G ��M

�
. More specifically,

— F #%$ 
�& ��M � ( � F � R F � G F if M is a concatenation type;
— F #%$ 
�& ��M � ( � F � �9R�) - � F � G F if M is a disjunction type;
— F #%$ 
�& ��M � ( � F � � F � G F if M is a Klenne closure;
— F #%$ 
�& ��M � ( � F � F � G F if ( is 	�

� . �

PROOF. Suppose that there exists a valid embedding K M � � / �
G , where

� � I
��� � ��� � �"� � � and

�
G
I ��� G

���
G
�"�
G
�
, and K I ��� � #%$ 
�& � . Consider an arbitrary edge ��M � ( �

in
� �

.
(1) M is a concatenation type. Then #%$ 
�& ��M � ( � is an AND � � path that can be simplified
to one that contains at most R cycles, where R cycles may be necessary to ensure that
#%$ 
�& � M � ( � is not a prefix of any #%$ 
�& ��M � ( 1 � for distinct subelement types ( � ( 1 of M .
Any other cycles can be removed, and all of the R cycles can be made simple cycles (i.e., a
cycle that does not contain repeated labels), while the modified K remains well defined.
Thus F # $ 
�& ��M � ( � F is bounded by R F � G F .
(2) M is a disjunction type. Then # $ 
�& ��M � ( � is a disjunction � � path that can be simplified
to one that contains at most R ) - simple cycles: R cycles to ensure that # $ 
�& ��M � ( �
is not a prefix of any # $ 
�& ��M � ( 1 � , where ( 1 is another subelement type of M , and an
additional cycle to include a dashed edge. After the simplification the modified K remains
well defined. Thus F #%$ 
�& � M � ( � F � �9R>) - � F � G F .
(3) M is defined to be a Kleene closure M / ( � . Then #%$ 
�& � M � ( � is a STAR �Q� path,
which can be simplified such that # $ 
�& ��M � ( � contains at most one simple cycle (to include
a star edge). Thus #%$ 
�& ��M � ( � � � F � G F .
(4) M is defined to be M / 	�

� . As in (1), #%$ 
�& � M � ( � is no longer than F � G F . �

Transformation language. The nice properties of schema embeddings suggests a lan-
guage for specifying XML transformations. Given two DTDs

� � ���
G , one can specify a

mapping from AB� � � � to AJ� � G
�

by defining embedding K I ��� � #%$ 
�& � , i.e., specify a map-
ping � from types of

� �
to types of

�
G , and a mapping from edges over

� �
to � � paths

over
�
G , both at the schema level in a declarative manner. Such an embedding specification

K yields an XML mapping KSL of K that guarantees the following: (1) it type checks, i.e., for
any 	 T AB� � � � , K L � 	 � conforms to the target schema

�
G ; (2) it is invertible, i.e., there

exists a quadratic time function KRQ
�
L such that KRQ

�
L ��KSL ��	 �"�BI 	 for any 	 T AB� � � � , and

(3) it is query preserving w.r.t. � � , i.e., there is a quadratic time function � such that for
any � T ��� and any 	 T5AB� ���9� , � � 	 �OI � ��� � ��KSL ��	 �"� . This language is able to capture
XML DTD mappings commonly found in data migration and integration, and provides a
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practical approach to defining XML schema mappings. One might be tempted to have a
more expressive language for specifying XML mappings; however, this is tempered by the
negative results of Section 3, which tell us that the richer the language is, the more difficult
to identify information-preserving mappings.

5. COMPUTING SCHEMA EMBEDDINGS

In this section we address the computation of XML schema embeddings as defined by
the following problem, stated in terms of two XML DTD schemas

� �@I ��� � ��� � �"� � � and�
G
I ��� G

���
G
���
G
�
, and a similarity matrix $ 
 
 :

PROBLEM: Schema-Embedding
INPUT: Two DTDs

� �
and

�
G and matrix $ 
 
 .

OUTPUT: A schema embedding K M � � / �
G valid w.r.t. $ 
 
 if one exists.

In practice, a reasonable goal is to find an embedding K M � � / �
G with as high a value for

��� $�� ��K � $ 
 
 � as possible. The ability to efficiently find good solutions to this problem will
lead to an automated tool that, given two DTD schemas, compute candidate embeddings to
recommend to users.

However desirable, this problem is intractable. Worse, it remains NP-hard for nonrecur-
sive DTDs even when they are defined in terms of concatenation types only.
Theorem 5.1: The Schema-Embedding problem is NP-complete. It remains NP-hard for
nonrecursive DTDs. �

PROOF. We show that the schema embedding problem is NP-complete. A NP algorithm
is as follows: guess a mapping, and then check whether it is an embedding; the latter can
be done in PTIME. The NP-hardness is verified by reduction from 3SAT, which is NP-
complete (cf. [Garey and Johnson 1979]). It suffices to show that the problem is NP-hard
for nonrecursive DTDs, by reduction from 3SAT. An instance of 3SAT is a well-formed
Boolean formula � I ! �O�������9��! : of which we want to decide satisfiability.

Given an instance � of 3SAT, we define two nonrecursive DTDs
� � � �

G such that � is
satisfiable iff there is a valid schema embedding from

� �
to

�
G . We define a similarity

matrix $ 
 
 such that for all element types M in
� �

and ( in
�
G , $ 
 
8��M � ( �?I - , i.e., there

is no restriction on the mapping. Assume that all the propositional variables in � are
� � �879787 � ��� . We define

� � ���
G as follows.

� y = ��� y + � y + � y � , where� y = � � y +
	D+�� � " � � � 
�7�
 '��6+ :�* � " ����� 
�5�
 '�� +��I* � ;� y is defined as:��� � y +�J�J0J�+��R#�+�� y +�J�J0J�+���� ,� � ��	 +�J�J�J�+
	 ; /* : % 7 occurrences of 	 */� � ����+�J�J�J�+�� /* � : % 5 occurrences of � */� � � /* for � ranging over ��+
	 */

� �
= ��� � + � � + � � � , where� �
= � � � +
��+
	 � " � � � 
 7�
 '��6+ :�* � " ��� � +! � +�" � 
&5�
 '��6+��E* � ;� �
is defined as:���#� y +0J�J�J�+��$� ,� � �% � +�" � , /* for 7�
 '��6+��E* */ � � � � � +0J�J�J�+�� �'& +
��+�J�J�J0+
� /* all � �)( in which � � appears, and � : % 7 occurrences of � */

ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.



Information Preserving XML Schema Embedding � 19

r1

C1 Cn Y1 Ym

ZZ Z Z W W WW

(a) Source � y
W W W W W W W W

X1 Xm

r2

T1 F1

Ci Cj

Tm Fm

Ck
Cn

Z
Z Z Z ZZZ

Z

W W

(b) Target �
�

Fig. 3. DTD schemas in the proof of Theorem 5.1

" � � � �� � +�J�J�J�+�� ��'& +
��+�J�J0J�+
� /* all � �� ( in which � � appears, and � : % 7 occurrences of � */� � ��	 +�J�J�J�+
	 ; /* : % 7 occurrences of 	 */� � � /* for � ranging over ��+
	 .

The DTDs are depicted in Fig. 3(a) and 3(b), respectively. Note that both
� � � �

G are
nonrecursive and are defined in terms of concatenation types only. Intuitively,

�
G encodes

� , and
���

is to assert the existence of a truth assignment to � � �978797 � � � that satisfies all the
clauses in � . In both

� �
and

�
G ,

! < is to code clause
! < , which has a “signature” consisting

of * ) � occurrences of � that is to ensure that
! < in

���
is mapped to

! < in
�
G . In

�
G , � �

codes the variable � � in � , which may have either a true value or false, indicated by 	�< and
� < , respectively. In DTD

� �
, � � �978787 � � � are to code the “negation” of a truth assignment �

to variables in � : ��� is mapped to � � if �D� � � � is true for some � T 
 - � � � , and ��� is mapped
to 	 � if �D� � � � is false. This is asserted by the number of � children below � � and 	 � � � � .

We next show that
� � ���

G are indeed a reduction from 3SAT, i.e., there is a valid embed-
ding from

� �
to

�
G iff � is satisfiable. First, suppose that � is satisfiable. Then there exists

a truth assignment � to � � �878797 � � � that satisfies � . We define an embedding K I ��� � #%$ 
�& �
such that � � ! < �?I ! < , ����� �?I � , ����� �?I

� , ����� < �JI � < if �D� � < � is true, � ��� < �JI 	 <
if �D� � < � is false; furthermore, #%$ 
�& � � � �"! < � is a path � < from

�
G to

! < in
�
G such that there

exists � TN
 - � � � and ��� O 	 � is on � < if clause
! < is satisfied by �D� � � � = true, and ��� O%� �

is on � < if clause
! < is satisfied by �D� � � � = false; since � is satisfied by � , there must exist

such a variable � � for every
! < . It is easy to verify that K is indeed an embedding from

� �
to

�
G .

Conversely, suppose that there exists a valid embedding K I ��� � #%$ 
�& � from
� �

to
�
G .Observe that K must have the following properties. (1) ��� ! < � is either

! < or 
 < , where 
 <
is either 	&< or � < ; and (2) ����� � � is mapped to 
 � , where 
 � is either 	 � or � � , such that
� ��� � �  I � ��� � � and � ��� � �� I ��� ! < � for R  I � , �  I � ; and furthermore, for each � � there
exists � � such that � ��� � �4I 
 � . This is because, by the definitions of

� � ���
G , (1) ��� ! < �

must have * ) � descendants of type � , like
! < in

���
; and (2) ����� � � must have

� * ) �
descendants of type � , and may not be an ancestor of ����� � � or ��� ! < � , and vice versa.
We define a truth assignment � such that �D� � � � is true if ����� � �$I � � and �D� � � � is false if
� ��� � �CI 	 � . It is easy to verify that � satisfies � . �

In light of the intractable results we develop two efficient yet accurate heuristic algo-
rithms for computing schema embedding candidates in the rest of the section.
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Notations. Recall that a schema embedding is a path mapping K that is valid for each
element type M in

� �
. Since the validity conditions for M involve only M ’s immediate

children, it is useful to talk about mappings local to M . A local mapping for M is simply a
partial path mapping ��� � � #%$ 
�& � � such that (a) � � and #%$ 
�& � are defined exactly on all the
element types appearing in M ’s production M / � � ��M � , including M itself; and (b) it is
valid, i.e., it satisfies the path type and prefix-free conditions given in the last section.

Consider two partial mappings, K � I ��� � � # $ 
�& � � and K � I ��� � � #%$ 
�& � � . We say that
� � and � � conflict on M if both � � ��M � and � � ��M � are defined, but � � ��M �  I � � ��M � , and
similarly for #%$ 
�& � and # $ 
�& � . We say K � and K � are consistent if they do not conflict,
either on � or # $ 
�& . The union of consistent partial mappings, denoted by K ��� K � , is a
partial embedding ��� ��� � G

� #%$ 
�& � � #%$ 
�& G
�
, where

� y �,�Q��� � � �,�Q� =
�� � � y �,�Q� if

� � �,�Q� is � (undefined)� � �,�Q� if
� y �,�Q� is �� y �,�Q� otherwise

similarly for #%$ 
�& � � M � ( � � # $ 
�& G � M
� ( � .

Outline. In the rest of the section we first present a technique for finding local embed-
dings, already a nontrivial yet interesting problem. Making use of this algorithm, we then
provide three heuristics for finding embedding candidates. The first two are based on ran-
domized programming and the last is by reduction from our problem to the Max-Weight-
Independent-Set problem for which a well-developed heuristic tool [Busygin et al. 2002]
is available.

5.1 Finding Valid Local Mappings

We start by giving an algorithm to find a local embedding K � I ��� � � #%$ 
�& � � when the
partial type mapping � � is fixed, as this is a key building block of our schema-embedding
algorithms. We then extend the algorithm to handle the general case when � � is not given.
To simplify the presentation we focus on nonrecursive DTDs, i.e., DTDs with a directed
acyclic graph (DAG) structure, but we show that our technique also works on recursive
(cyclic) DTDs.

Finding Valid Paths. Let M T � � be a source element type with production M / � � � M � ,
in which the element types appearing in

� � ��M � are ( � �978797 � ( � . Assume that the type map-
ping � � is already given as a partial function from � � to � G that is defined on ( � �879787 � ( �

and M . The Valid-Paths problem is to find paths #%$ 
�& � ��M � ( �9�
�978797 � #%$ 
�& � ��M � ( � � such
that ��� � � #%$ 
�& � � is a valid local mapping for M .

The validity conditions stated for embeddings in Section 4.1 require that (a) target paths
for each edge are of the appropriate type (AND, OR, or STAR path), and (b) that the target
path for an edge is not a prefix of a sibling’s target path. We abstract the second condition
as a directed-graph problem: Given a directed graph 2 I ��
 � � � , a source vertex � and
a bag of target vertices 	�
 
�
 I � F � � 78797 � � F � , find paths � � �879787 � � � such that no path is the
prefix of another. That is, for all �  I � , � �  I � <�O � < � for any � < � including the empty path.
In contrast to most sub-problems of Schema-Embedding, this can be solved in PTIME.
We introduce our solution by giving an algorithm that works only on a DAG and discuss
extending it to handle cycles below.

We present our algorithm, ��
���� $ 
�& 	������ , in Fig. 4, for finding prefix-free paths in a
DAG. The algorithm depends on the recursive procedure 

� $���� � 	 � , shown in Fig. 5. The
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Algorithm ������� � ��� ���
	�� ( 
 +�56+�������� )
Input: Directed Acyclic Graph 
 , source node 5 ,

a bag of target nodes � ����� � �9
 � y +0J�J�J�+���� 
 � .
Output: Paths � y +�J�J�J0+ � � satisfying the prefix-free condition.
1. path � := � empty � ;
2. � ��� ;
3. � � � �"! � ( : ) := # �%$ �&! for all : ;
4. ��� �(' !9� ��! ( 
 + 5 + � +�������� + � );
5. ) # � ����� is nonempty
6. �*!��,+ � � � ;
7. ! $ ��!D�*!��"+ � �-� ;

Fig. 4. Algorithm .0/,132 ������4�57698

Algorithm ��� �(' !9� ��! ( 
 +�:<+ � +&� ����� + � )
Input: Directed Acyclic Graph 
 , node : ,

a bag of target nodes �:���;�����9
 � y +�J�J�J�+9��� 
 � ,
� , the current path to the root,
and � , the output set of prefix-free paths.

Global variables: � � �<�"! � : maps nodes to � ���<+�! , # �3$ ��! �
Output: a list of paths.
1. ) # ( � � � �"! � (n)) �*!��"+ � �=# �3$ ��! ;
2. ) # ( : 
>������� )
3. remove : from � ����� ;
4. add � to �
5. �*!��"+ � � ��� +�! ;
6. ! $ ��! ret = # �%$ ��! ;
7. #;? � each edge � � �8:1+���� outgoing from :
8. append � to � ;
9. ret := ret ? ����� �(' !9� ��!�� 
 +!� + � +��������,+ � � ;
10. remove � from � ;
11. ) # ( �@? � ret) � � � �"! � ( : ):= ��� +�! ;
12. �A!"�,+ � � ret;

Fig. 5. Algorithm �CB �ED�F,BG4<F

intuition of this algorithm is to modify a simple (but exponential) algorithm to recursively
enumerate all paths in a DAG in such a way that prefix-free paths are found, but excessive
running time is avoided. In a nutshell, 

� $���� � 	 � conducts a depth-first-search on the input
graph 2 , enumerating paths from the source node � to target nodes in 	 
 
�
 , and identifies
prefix-free ones. It uses a (global) boolean array H $��JI���� ( * ) to keep track of whether the
subgraph rooted at a node * has been searched and yielded no matches for nodes in 	 
 
�
 ,
and if so, it does not re-enter the subgraph. A (local) variable ret is used to indicate whether
the search of a subgraph finds any matches to nodes in 	 
 
�
 .

To see that 

� $���� � 	 � is correct, consider removing line 5 in which the algorithm returns
early, and line 11 in which nodes are marked to avoid revisiting them. It is clear that
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the resulting algorithm considers every possible path leading to nodes in 	 
 
�
 , and assigns
one path to each * T 	 
 
�
 , but it does not avoid assigning one node the prefix of another
path. However, the prefix-free condition is assured by the return at line 5 without affecting
correctness, since a suffix of the path assigned to * could only be generated by continuing
the recursion from this node. Thus it remains to argue that the algorithm is still correct if
line 11 is in place. The intuition of line 11 is simple: if no new target nodes were found
in the subtree of a node when it was explored by the recursive calls of lines 7-10, then the
current node will not be on any path to any * 1 remaining in 	 
 
�
 .
Example 5.1: Consider the schema embedding problem shown in Fig. 1. Assume that
$ 
 
 (regular, seminar), and $ 
 
 (project, advanced) in

���
are 0.75. This means that the

bag of possible target matchings for source tags � regular, project � in
� �

can be � F seminar,
advanced F � from

�
. We then invoke 

� $���� � 	 � with

�
, category, � (which is empty), and 	 
 
�


as � F seminar, advanced F � . The first call to 

� $���� � 	 � would result in all edges from category
to be recursed. Say, our algorithm first picks the edge to advanced. Line 2 of 

� $���� � 	 �
would check advanced to be in 	�
 
�
 and add the path to advanced into � . It would then
return back from the recursion and try the other edges from category in lines 7 though 10.
This would result in a prefix-free path mandatory/seminar which would also be added to
� . �

To analyze the performance of ��
 � � $ 
�& 	���� � , consider 

� $�� ��� 	 � as a sequence of for-
ward and backward traversals of edges in the graph. A forward traversal occurs at line 9
and a backward traversal at lines 1, 5 and 12. Clearly, the number of forward traversals
and backward traversals in a run are the same. Further, observe that one returns from an
un-marked node at line 5 only on the path back from some node newly removed from 	 
 
�
 .
Thus, there can be at most F 	 
 
�
 F F 
 F such backward steps, and at most F � F other backward
steps (which mark the child of the edge traversed). Since 2 is a DAG, the algorithm is in
E@��F 	 
 
�
 F F 
 F � time.

To use ��
 � � $ 
�& 	���� � in our algorithms for schema embedding, we must further ensure
that the paths returned match the types needed for * T 	 
 
�
 . That is easy to accomplish, as
the type of a path can be maintained incrementally as it is lengthened and shortended (by
storing counts of nodes of each type), and be checked at line 2.

Schema Embeddings with a Given � . This algorithm can be used to directly find a
schema embedding K I ��� � # $ 
�& � from

� �
to

�
G when the type mapping � is a given total

function from � � to � G . As remarked earlier, the validity conditions for any M in � � in-
volve only M ’s children; thus to find #%$ 
�& we only need to find valid paths for each M in � �
and take the union of these valid local embeddings. This yields an E@��F � � F F � G F

�
algorithm

to find embeddings in this special setting, which is not so uncommon since one may know
in advance which target type a source type should map to, based on, e.g., machine-learning
techniques [Doan et al. 2001].

Handling Multiple Targets. However, to find valid local mappings when � is not given,
we must consider that there are multiple possible target nodes for each source node. The
general Local-Embedding problem is to find a local embedding ��� � � # $ 
�& � � when � � may
not be fixed. This problem is no longer tractable as shown below.

Theorem 5.2: The Local-Embedding problem is NP-complete for nonrecursive DTDs. �
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PROOF. We show that the Local-Embedding problem is NP-hard for nonrecursive DTDs,
by reduction from 3SAT. Given an instance � I ! � � ������� ! : of 3SAT, we define two non-
recursive DTDs

� � ���
G , where

���
consists of a single production, and a similarity matrix

$ 
 
 such that � is satisfiable iff there is a valid schema embedding from
� �

to
�
G w.r.t. $ 
 
 .

Assume that all the propositional variables in � are � � �878797 � � � . We define
� � ���

G as fol-
lows.

� y = ��� y + � y + � y � , where� y = ��� y � " � � � 
�7 
 '��6+ :�* � " ����� 
�5 
�' � +��I* � ;� y is defined as:��� � y +0J�J�J�+�� # +�� y +0J�J�J�+�� �
� �

= ��� � + � � + � � � , where� �
= ��� � � " � � � 
 7 
 '��6+ :�* �D" ��� �;+� �;+�"��I
 5 
 ' � +��I* � ;� �
is defined as:���#� y +�J�J�J�+!� � ,� � �  � +�" � , /* for 7 
�'��6+��E* */ � � � � � +�J�J�J�+ � � & /* all � � ( in which � � appears*/" � � � �� � +�J�J�J0+�� �� & /* all � �� ( in which � � appears */� � � /* for � ranging over � � .

Similar to the proof of Theorem 5.1, we use �
� �978787 �

� � in
� �

to code the “negation” of
a truth assignment � to variables in � . In both

� �
and

�
G ,

! < is to code clause
! < . Note

that both
� � ���

G are nonrecursive and are defined in terms of concatenation types only.
Furthermore,

� �
consists of a single production.

The similarity matrix $ 
 
 is defined such that
� ����� � � +�� � �<� � , and � ��� � � � +�� � ��� for any ������ � ,
� ����� ��� +
	��;�G� � if 	��Q�  � or 	���� " � , and
� ����� ��� +
	 �<��� if 		��  
� and 	��� "��

That is,
! < in

���
can only map to

! < in
�
G , and � � in

���
can only map to either 	 � or � � .

Along the same lines as in the proof of Theorem 5.1, one can verify that � � in
���

can
only be mapped to the negation of the truth value of � � , and as a result, � is satisfiable iff
there is a valid schema embedding from

� �
to

�
G w.r.t. $ 
 
 . �

One heuristic approach to finding local embeddings is to extend ��
 � � $ 
�& 	���� � as fol-
lows. We compute the set of all pairings of source nodes M and possible matches for M
from $ 
 
 and pass it as 	 
 
�
 . We also modify line 3 of 

� $�� ��� 	 � to (a) pick an arbitrary pair
with the current node as the target from 	 
 
�
 at line 2 and (b) remove all pairs associated
with source node M from 	�
 
�
 at line 3. While this may work, it is essentially a greedy
algorithm and may not find a solution if one exists. To compensate for this, we actually
use a randomized variant ��
 � � $ 
�& 	�
 $ 
 � (not shown) which (a) picks a random source
node associated with * at line 2 of 

� $�� ��� 	 � , and (b) tries outgoing edges from * at line 7
in random order. The ability of ��
�� � $ 
�& 	�
 $ 
 � to find embeddings varies with the size of	 
 
�
 , and will be investigated in Section 6.

Handling Cycles. Of course, schemas are frequently cyclic (recursive), and the algorithms
as presented so far only handle DAGs. In fact, handling cycles generally is somewhat more
complicated, but not hard – it is easy to see that an arbitrary number of paths can be
generated by repeated loops around some cycle on the path to a target, and careful use of
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Algorithm ����� ��� ��� � ( 
 + 5 +��:����� )
Input: Directed graph 
 , source node 5 ,

a bag of target nodes � ����� � �9
 � y +0J�J�J�+���� 
 � .
Output: Paths � y +�J�J�J0+ � � satisfying the prefix-free condition,

or “no” if such paths do not exist.
1. Let 
�� be the subgraph of 
 reachable from 5
2. if any � � is not in 
 � return “no”;
3. Let 
�� be the component graph of 
 � ; /* see text */
4. Let � be the subset of the components 2 � in 
 �

with a nonempty target shadow; /* see text */
5. Let � ����;� be the subset of ������� not in the shadow of any 2 � ;
6. Add each 2 � with a nonempty target shadow to � ������ ;
7. Let 
 � be 
 � with the shadow of each 2 � removed;
8. Let � � �9����� � ��� ��� 	:� ( 
 ��+�56+�� ������ );
9. For each � � 
 � that ends at a new target for some 2 �
10. remove � � from � ;
11. � ����;� � ������� in the shadow of 2 �
12. add ����� ��� �������	� $ ! ( 
 + 
�� + � � + 2 � +�� �� ��� ) to � ;
13. return � ;

Fig. 6. Algorithm .%/�1 �������,4

these paths can guarantee the prefix-free property (Figure 2(e) gives such an example, in
which the cycle is unfolded once to get a prefix-free path, in contrast to Fig. 2(d)). We give
the detail of the algorithm below. It should be mentioned that complication is not warranted
here since long cyclic paths are almost certainly semantically uninteresting. In practice, we
have extended ��
�����$ 
�& 	�� ��� once again to allow limited exploration of cycles limited by
(a) no more than R trips through visited nodes and (b) no more than � total path length. A
bound on R and � is given in Theorem 4.3 and usually R and � are set to small numbers.

We next describe how the algorithm for finding paths in an acyclic graph can be gener-
alized to handle arbitrary cyclic graphs in time polynomial in the size of the graph. The
overall algorithm has three parts: 1) break up the original graphs into a DAG of connected
components, 2) solve this problem for the DAG case, 3) add back in the connected compo-
nents and 4) use the cycles found in these components to create prefix-free paths to nodes
in the component or reachable therefrom. We now describe these steps in more detail.

In Figure 6 the overall algorithm for finding a set of prefix-free paths from a single root
� to a bag of target nodes in a possibly cyclic graph is given. In step 3 the algorithm
computes a “component graph” of a graph 2 which we define as the graph produced from
2 by replacing each cyclic connected component in 2 with a new node, � < , and creating
edges to and from � < for each edge which entered or left component � in the original graph.
Note that the resulting graph is a directed graph containing component nodes � < as well as
any node in 2 that did not participate in a cycle.

We now introduce some notations: a node * T 
 is said to be in the shadow of � < if *
can be reached in 2 by a node in � < . The target shadow of � < is the subset of 	 
 
�
 in the
shadow of � < . Note that a target node may be in the shadow of more than one component
node.
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Algorithm ����� ��� �������	� $ ! ( 
 + 
�� + � + 2 � +�������� )
Input: Directed graph 
 , component graph 
 � ,

connected component 2 � , path to 2 � in 
 �
target nodes  � � y +�J0J�J���� in shadow of 2 �

Output: Paths � y +�J�J�J0+ � � for � y J0J�J���� .
1. � � ) $ !�� ����� not empty
2. $ !�� � be a cycle in �:����� containing at least

one node (if any exist) from �:������� 2 �
and the last node in � ;

3. � ? + � � := 0;
4. #;? � ! � � � node : in ������� in reverse topological order

s.t. : is reachable from �
5. output � # = � + � ? + � � trips around �

+ path from last node in � to : ;
6. remove : from ������� ;
7. � ? + � � ++;

Fig. 7. Algorithm .%/�1 �������������
	 F

To continue with the discussion of ��
�� #%$ 
�& 	 , the algorithm at line 4-5 removes cyclic
components and all nodes reachable from them from the component graph. For each cyclic
node that contains a target node or from which a target node is reachable, a node for that
component is added back to the graph as a new target node (along with non-redundant
edges from nodes in � < ). The idea is that the computed path to this node will be used as
the prefix for paths assigned to target nodes in the shadow of � < . A bag 	 1
 
�
 is computed
from 	 
 
�
 by removing any target nodes no longer in the graph and adding any of the
just-mentioned component nodes. Finally, for each component node � < with a non-empthy
target cycle, a new target set 	 <
 
�
 is created with target nodes, if any, in the shadow of � < ,
and ��
�� #%$ 
�&��
��� � � is called to construct paths to these targets.

Procedure ��
�� #%$ 
�&������ � � is shown in Figure 7. The intuition for this algorithm is as
follows: consider a path consisting of the nodes in a cycle, say � � �978787 � � : � � � , followed
by three nodes, � , � , � . How can we construct prefix free paths to � , � and � ? Clearly we
can create an arbitrary number of paths to each node by going around � � �978797 � � : � � � some
number of times. If we form paths to � and � , say

���
and

� � , it is easy to see that the
prefix-free property will only hold if there are more instances of the � cycle in the path to���

than that to
� � .

In the algorithm, at line 2, a cycle, � is identified containing at least one node from	 
 
�
�� � < , if such nodes exist. This cycle is used to provide non-prefix paths for each target
node in � along with target nodes in the shadow of � < but not in � < itself. In line 5, the
notation “ ��� � 
 
 trips around � ” means that the nodes of the cycle, starting with the last
node in � , are added to the path, in order, then this is repeated ��� � 
 
 times. This is repeated
for the case that � < is complex, and some target nodes remain in � < but not in the first �
chosen. Alternatively, we could find a cycle containing all the nodes from 	 
 
�
 � � < at
line 1, but the paths produced would be even longer than the ones produced by the current
algorithm. Finally, of course, we could not search for a simple (Hamiltonian) cycle with
all the 	 
 
�
 nodes in polynomial time.
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Algorithm � � � !9�*! � (
� y + � � +�� + � )

Input: Schemas
� y and

���
, an ordered set of source tags � ,

and � , a set of local embeddings for each source tag.
Output: a schema embedding from

� y to
� �

if one is found.
1. � := empty solution � � +��6� ;
2. #;? ��� in �
3. #;? � ��� in � �,�Q�
4. 2 := conflict between � and ��� ;
5. ) # 2 is null
6. � � � � ��� ; break;
7. ) #!2 is not null
8. �9����� � ��� ��� � ��� ( 
 , � , ������� �,���	� 2 );
9. ) #!2 is not null �*!��,+ � � � ;
10. �*!��,+ � �
� ;

Fig. 8. Algorithm �=B 1�F,BGF�1

5.2 Three Methods for Finding Schema Embeddings

We next give three heuristic embedding-search algorithms: � � $�� 
 
 ��� � � � ����� , 
 $ 
����9H�� � � �������
and 
 $ 
 ����H�� $���� 
�� .

Finding Solutions with Ordered Algorithms. Our first two heuristics are based on a
common subroutine � � � � ����� , shown in Fig. 8. A key data structure is a table,

!
, where! ��M � is a set of known local embeddings for a source node M . The initialization of this

table is discussed later. Given
!

and an ordered set E of source types, � � � ������� tries to
assemble a consistent mapping K by considering each M in E order (line 2), and trying to
find a local embedding K � in

! � M � which can be merged with the existing K without a
conflict (lines 3-8). If a conflict occurs it finds new local embeddings for M by invoking��
���� $ 
�& 	�
 $ 
�� (lines 7-8).

Our first � � � � ����� -based algorithm, � � $�� 
 
 ��� � � � ����� , is shown in Fig. 9. Here
! ��M � is

initialized with a single randomly chosen local embedding for each source node M , and E
is sorted by the quality of the local embedding.

In our second algorithm 
 $ 
����9H�� � � ������� (not shown),
!

is the complete set of local
embeddings discovered so far for each source node (lines 4 and 5 in Fig. 9), while E is a
random ordering of source nodes (line 6 in Fig. 9).

A Reduction Approach. We now discuss our third heuristic, 
 $ 
�����H�� $���� 
�� . To un-
derstand this heuristic, consider the following problem defined on the table

!
of local

mappings defined above:

PROBLEM: Assemble-Embedding
INPUT: Two DTDs

� �
and

�
G , a similarity matrix $ 
 
 , and a table

!
.

OUTPUT: A schema embedding K M � � / �
G , valid w.r.t. $ 
 
 , formed as the union

of a subset of embeddings in
!

if one exists.

Composing K from local embeddings in
!

is nontrivial:
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Theorem 5.3: The Assemble-Embedding problem is NP-complete for nonrecursive DTDs.
�

PROOF. We show that the Assemble-Embedding problem is NP-hard for nonrecursive
DTDs, by reduction from 3SAT. Given an instance � I ! �9������� � ! : of 3SAT, we define two
nonrecursive DTDs

� � � �
G and a table � � � $�� such that � is satisfiable iff there exists a valid

schema embedding from
� �

to
�
G that is formed by composing a subset of the assignments

found in � � � $�� . The similarity matrix $ 
 
 is defined such that for all element types M in
� �

and ( in
�
G , $ 
 
8��M � ( �>I - , i.e., there is no restriction on the mapping. Assume that all

the propositional variables in � are � � �978797 � � � . We define
� � � �

G as follows.
� y = ��� y + � y + � y � , where� y = � � y �D" � � � + 
 � 
�7 
 '�� + :�* � " ��� �$
�� 
 '�� +��I* � ;� y is defined as:� � � y +�J�J�J0+��R#

� � � 
 �
 � �%� y
� +��

�
� +!���� /* � y

� +��
�
� +����� are the variables in � � */

� �
= ��� � + � � + � � � , where� �
= � � � �D" � � � + 
�� ��� �
	 
�7�
 ' � + :�*�+�� 
 ' � +
��* �" �� � +�" � 

� 
�' � +��I* � ;� �
is defined as:� � � y +�J�J�J0+��R# ,� � � 
�� ��� y 	 +�J�J0J�+ 
�� ��� � 	 , /* for 7�
 ' � + :�* */
 � ��� ��	 �%� � y +�� � � +�� � � /* see below */� � � /* for � ranging over � � .

The production for 
 � < � � � is to code a possible truth assignment � < to variables in
! < such

that � < satisfies
! < . More specifically, assume that � � � � � � G

� � � � are the variables in
! < .

Then ��� � � ��� G
�
� � � are the truth values of a possible truth assignment � < to these variables,

i.e., ��� � is either 	 ��� or � ��� , �OT 
 - �
� � , such that there exists ����� for � T 
 - �
� � that is 	 ��� if
� ��� is positive in

! < , and it is � ��� if � ��� is negative in
! < . That is, not all � � � � � � G

�
� � � are

the “negations” of the truth values that satisfy
! < . For example, if

! < I � � ���� G
� � � , then


 � < � � � is to specify all the truth values of � � � � G
� � � except � � � 	 G

� � � . Intuitively,
�
G codes

� and
���

is to select a truth assignment for the variables.
The table � � � $�� is given as follows.
� � � y +0J�J�J�+��R# : $ ? � �3$ � �6� consists of a single local embedding such that ���� � , � � �� � � , with

corresponding edge mapping.
� � � 
 � : $ ? � �3$ � � � � consists of seven local embeddings, namely, � � �� � � , 
 � �� 
�� ��� ��	

for � 
 '�� +���* , with corresponding edge mapping.

 � �#� y

� +��
�
� +�� �� : $ ? � �%$ � 
 � � consists of seven local embeddings, namely, 
 � �� 
�� ��� �
	 and� �� ��#��� � , for � 
 ' � +
��* , with corresponding edge mapping.

That is, each of the local embeddings in � � � $�� �*
S< � is a truth assignment ��< to those variable
involved in the clause

! < such that ��< satisfies
! < . In other words, any local embedding

in � � � $�� ��
 < � satisfies
! < . Note that a schema embedding formed composing a subset of

� � � $�� has to take one and only one local embedding from � � � $�� ��� � for each � in
� �

such
that these local embeddings do not conflict with each other. That is, each variable in the
embeddings has a unique truth value; in other words, there cannot be local embeddings
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Algorithm � + �%$ ) � � � � � !9�*! � (
� y + � �

)
Input: Schemas

� y and
���

.
Output: a schema embedding from

� y to
���

if one is found.
1. count := 0;
2. � � ) $ ! (count � MAX TRIES) � ?
3. count++;
4. #A? � each source node �
5. � �,��� := � a local embedding, � � for �

as found by ������� � ��� ��� � ��� � ;
6. � := All source nodes, ordered by � + �3$ � � � + � ���/� ;
7. � := � � � !8�A! � (

� y + � � +�� + � );
8. ) # � �� �
9. �*!��"+ � � � ;
10. �A!"�,+ � � � ;

Fig. 9. Algorithm ������	 � � � �=BG1@F,BGF�1

K
< I ���
< � #%$ 
�& < � from � � � $�� �*
 < � and K � I ��� � � # $ 
�& � � from � � � $�� �*
 � � such that K
<���� � �!I
	 � and K � ��� � �CI � � for any � � .

One can verify that � is satisfiable iff there exists a valid schema embedding K M � � /�
G formed by composing a subset of � � � $�� , one from the set of local embeddings for each

production in
� �

. �
To cope with this, the 
 $ 
����9H�� $���� 
 � heuristic takes the approach of reducing the Assemble-
Embeddings problem to the problem of finding high-weight independent sets in a graph.
It uses an existing heuristic solution [Busygin et al. 2002] to produce partial or complete
solutions to this problem, which can be used to create partial or complete embeddings.

Before describing our reduction, we review the definition of Max-Weight-Independent-
Set. That problem is defined on an undirected graph 2 I ��
 � � � (not to be confused with
a schema graph) with node weights � 
 � � � � T 
 . The goal is to find a subset 
 1 of 
 such
that for � < and � � in 
 1 , there is no edge from � < to � � ; i.e., ��� < � � � �" T � and the weight of

 1 , defined as ��� �
	�� � 
 � � , is maximized.

Given an instance of the Assemble-Embedding problem, it is straightforward to con-
struct an instance of Max-Weight-Independent-Set. First, for each local mapping K
� T! ��M � for any M T0� � , we construct a vertex ����� in 
 . Second, for each pair K�� � K �
of such mappings, we construct an edge between �
��� and ����� if K�� and K � conflict. The
weight of � � � is given as � �%$�� ��K � � $ 
 
 � .

To complete the algorithm on the resulting graph, we use an existing heuristic tool for
Max-Weight-Independent-Set, which returns a subset 
 1 of 
 . Finally, we construct an
embedding K by adding local embedding K�� to K for each ����� T 
 1 . The quality of K is
warranted by the heuristic tool used, and its correctness is verified below.
Theorem 5.4: If F 
 1 F I F � � F , K constructed as above is a schema embedding from

� �
to�

G . �

PROOF. Suppose that the algorithm for Max-Weight-Independent-Set returns a subset

 1 of 
 such that F 
 1 F I F � � F . We show that K constructed from 
 1 and � � � $�� is a valid
ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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Fig. 10. Varying accuracy
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embedding. To do so, it suffices to show the following: (1) for any element type M in � �
,

there exists a unique � ��� in 
 1 such that K � is a local embedding for M ; and (2) for any
� ��� � � ��� in 
 1 , K � and K � do not conflict with each other. For if these hold, then the union
of all the local embeddings corresponding to nodes in 
 1 is a valid embedding from

� �
to�

G .
To see (1), observe that in the construction of 2 , for any pair local embeddings K � ,

K 1� for the same element type M , there is a conflict edge between � ��� and � � �� . Since 
 1
is an independent set, it cannot possibly contain more than one local embedding for M .
Then from F 
 1 F I F � � F it follows that for each type M in � � , there exists exactly one local
embedding � � � for M such that � � � is in 
 1 .

To see (2), note that 
 1 is an independent set, and thus for any nodes � ��� � � ��� in 
 1 ,
there exists no conflict edge between the two in 2 . That is, K � and K � are consistent with
each other. �

If K is not a full embedding, we use ��
 � � $ 
�& 	�
 $ 
�� to generate new local mappings, if
any are available, for tags M not mapped by K , and repeating the process until either it finds
a valid embedding or it reaches a threshold of tries.

6. EXPERIMENTAL STUDY

In this section, we present an experimental evaluation of our schema embedding algo-
rithms. Our approach is to vary the difficulty of the matching task by introducing artificial
noise into a target schema, and measuring the ability of our algorithms to find an embed-
ding.

Our experiments are based on real-world DTDs taken from a publicly available reposi-
tory [of Washington ], plus the DTD of the XMark benchmark [Schmidt et al. 2002]. Each
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DTD was normalized into our graph representation. The XMark schema is the largest, with
57 productions after normalization. The XMark schema is apparently the most involved
schema as the others scale better (see Fig. 13), and accordingly, we evaluate our algorithms
for all the schemas but use the XMark schema for more detailed experiments.

Generating Target Schemas. Target schemas are generated from source schemas with
added complexity and noise. As we introduce noise, we take care to preserve this matching,
but make it harder to find in a number of ways, so as to attribute any failure to find a
matching to the algorithm rather than the data. Particular target schemas are generated
according to a probability 
 ��
 	 � in two steps: First, for each edge in the schema, with
probability 
 ��
 	 � , the edge in the target is replaced with a path of between 1 and 5 nodes.
When new nodes are added, with probability .5, the name of the node is formed as a small
mutation of an existing name. Also, the type of the deleted edge (AND, OR, STAR) is used
as the type of the first introduced edge to ensure that the original mapping is still possible.

In the second step, each node in the target (including newly-added nodes) are visited
again, and with probability 
 ��
 	 � , a new subtree is added under it. The new subtree adds
between 1 and 10 nodes. After each subtree addition, each leaf in the new subtree is
visited, and with probability .5, an edge is added to an existing leaf outside the newly-
added subtree. (This leaf may later have a subtree added under it.) The intuition for this
last step is that confusion between different parts of the tree is more likely to arise if the
same “attributes” (leaf nodes) appear in multiple places.

Generating the $ 
 
 . The similarity array, $ 
 
 , is initialized by computing pairwise string-
edit distances between source and target tags (string edit distance with unit cost is also
known as Damerau-Levenshtein distance). Furthermore, if a minimum threshold, 	 � � , of
similarity is not met by a pair, the similarity of that pair is set to 0, and as a result the tags
cannot be matched. Note that the “similar names” introduced above range in similarity
from .5 for short strings to over .8 for longer strings, and will be counted as potential
matches in many experiments. There are also similar names in the schemas themselves,
caused by the conversion of the schema to our graph format.

Clearly, 	 � � , referred to as the selectivity of $ 
 
 , is an important parameter, as it directly
determines the size of the candidate pool of target tags matching each source tag. Larger
selectivities make the problem easier, and for our experimental data if 	 � � is 1.0 (exact
matches only), finding a schema embedding reduces to finding valid prefix-free paths for
each local embedding in the source schema.

A second important parameter is the accuracy of $ 
 
 . This matters greatly for heuristic
algorithms, since the valid embedding in our generated data always has the highest average
quality. Accuracy is implemented with a parameter � , which varies between 0 and 1. Each
entry � in $ 
 
 is replaced by � � ) � -�� � � � 
 � , where � 
 � is a random number from 0 to
1. A low accuracy tends to mislead heuristics that rely heavily on $ 
 
 . Combining a low
accuracy with a very low selectivity makes the problem very difficult to solve.

Experimental Setting. Experiments are conducted by copying the source schema, adding
some amount of noise based on the parameter 
 ��
 	 � , and adjusting the $ 
 
 according to
	 � � and � . Then the three algorithms given in Section 5 ( 
 $ 
 ����H�� � � � ����� , � �%$�� 
 
 ��� � � �������
and 
 $ 
����9H�� $���� 
 � ) are used to try to find embeddings. For the ordered algorithms,
the set

!
is initialized by finding

�
random mappings for each M , and discarding the

ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.



Information Preserving XML Schema Embedding � 31

two with the lowest ��� $�� ratings. When not otherwise stated, experiments are run with
	 � � I � 7 � , � I � 7���� (accuracy) and 
 ��
 	 � I � 7 ��� . Since all algorithms (and the noise
introduction) have a random component, they are repeated with 40 different random seeds,
and an average is used.

The software is written in Java, except for the external heuristic for maximum indepen-
dent sets [Busygin ], which is an optimized C program. Experiments are run on a variety of
machines with Pentium III processors running at either 933MHZ or 1.0GHZ, with 256MB
of RAM.

Accuracy Results. Figure 10 shows how the three algorithms perform while varying ac-
curacy, with 
 ��
 	 � I � 7 ��� . The y axis shows the percentages of runs for which a successful
embedding is found. For this noise amount, the target schema is approximately three times
as large as the source schema. This graph shows that � �%$�� 
 
 ��� � � ������� is extremely sensitive
to the quality of the $ 
 
 values. It uses $ 
 
 extensively in its search pattern, and thus can-
not find solutions unless $ 
 
 is accurate. Figure 10 also shows that 
 $ 
 ����H � � � � ����� finds
correct solutions more frequently than 
 $ 
����9H�� $���� 
 � . While 
 $ 
�����H�� � � � ����� takes into
account $ 
 
 when it is seeking its solution set, it tries to find alternative solutions based on
the conflicts it detects, independent of the $ 
 
 values. 
 $ 
����9H�� $���� 
 � seeks alternative so-
lutions for nodes based solely on their weights, as defined by $ 
 
 . It does not use conflicts
to guide its search.

Varying Target Schema Size. We also consider target schemas with different numbers of
erroneous nodes and edges introduced. These results are shown in Fig. 11. Because this
graph shows results when accuracy is 0.75, � � $�� 
 
 ��� � � � ����� does not do well, as expected.

 $ 
 ����H � � � � ����� and 
 $ 
�����H�� $���� 
�� both find the correct solution the majority of the
time, decreasing somewhat as 
 ��
 	 � increases. The running times are shown in Fig. 12.

Different Source Schemas. We also run tests with different source schemas. We vary
 ��
 	 � over five different source schemas, using 
 $ 
 ����H�� � � � ����� and accuracy
I � 7���� . Fig-

ure 13 shows the running times for the various source schemas. For all runs across the
different schemas, a solution was found more than 90% of the time (not shown).

Varying Selectivity. We also run experiments with different values of selectivity. Both

 $ 
 ����H � � � � ����� and 
 $ 
 ����H�� $���� 
�� find solutions less frequently as selectivity decreases
(not shown). � � $�� 
 
 ��� � � � ����� is relatively indifferent to the selectivity level, finding ap-
proximately the same number of solutions at 	 � � I � 7 � as at 	 � � I � 7�� . The running time
increases dramatically, however, once 	 � � falls below � 7 � . The results are shown in Fig. 14.

Discussion. Our experimental results show that, when a feasible matching exists, it is
likely to be almost completely found for schema sizes of up to a few hundred nodes. While
this does not demonstrate that similar results can be obtained with differing target schemas
and the use of real-world tools to produce $ 
 
 , it is certainly promising. Further, we found
that the randomized algorithm 
 $ 
����9H�� � � ������� performs better than 
 $ 
����9H�� $���� 
 � , and
that � �%$�� 
 
 ��� � � ������� only does well with a highly accurate $ 
 
 . Based on these results, we
plan to integrate 
 $ 
 ����H�� � � � ����� and 
 $ 
�����H�� $���� 
�� , since the external independent set
heuristic is very fast in practice. Finally, we note that � � $�� 
 
 ��� � � � ����� may be important in
practice, where the $ 
 
 values may in fact be reliable.
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Fig. 13. Time required for different source schemas

7. RELATED WORK

A wide variety of techniques have been developed to solve different forms of schema
matching for relational, ER and object-oriented models (e.g., [Athitsos et al. 2005; Castano
et al. 2001; Lakshmanan et al. 1996; Li and Clifton 2000; Palopoli et al. 1998]; see [Rahm
and Bernstein 2001] for a recent survey). While these are not focused on XML DTD schema
matching, some techniques, such as linguistic analyses and machine learning, are useful
for finding name/label similarity, which our algorithms take as input.

Closer to XML schema matching are [Barbosa et al. 2005; Doan et al. 2001; Madhavan
et al. 2001; Melnik et al. 2002; Melnik et al. 2003; Miller et al. 2001; Milo and Zohar
1998]. LSD [Doan et al. 2001] proposes machine-learning techniques that make use of
instance-level information to determine XML DTD tag mapping. Systems of [Madhavan
et al. 2001; Melnik et al. 2002; Melnik et al. 2003] target a wide class of schemas and
can be tailored to a variety of data models. The similarity flooding algorithm of [Melnik
et al. 2002] provides a novel schema matching tool based on graph-similarity. Cupid [Mad-
havan et al. 2001] is a generic system that encompasses a variety of techniques such as
linguistic analyses and context dependencies. Rondo [Melnik et al. 2003] proposes a pow-
erful set of model mapping operators. For structure-level schema matching, these systems
adopt graph similarity to map a single source schema to a target. TransScm [Milo and
Zohar 1998] considers instance-level mappings based on schema matching, and uses a
semi-automatic mechanism to match highly similar schemas. Clio [Miller et al. 2001] also
focuses on deriving instance translation from schema mappings. The recent work [Barbosa
et al. 2005] studies invertible XML-to-relation mappings that guarantee the source XML
document remains valid in the presence of updates to the mapped relations. To our knowl-
edge, no previous work has considered information preservation for XML DTD schema
mappings. Our notion of schema embedding extends graph similarity and allows multiple
source DTD schemas to be mapped to a single structurally different target DTD. Further-
more, from a schema embedding an instance mapping can be automatically derived and it
guarantees both invertibility and query preserving w.r.t. regular XPath queries. The abil-
ity of finding information-preserving XML mappings is important for data integration (see,
e.g., [Lenzerini 2002]) and P2P systems (e.g., [Fuxman et al. 2005; Kementsietsidis et al.
2003; Tatarinov et al 2003]).

Information preservation has been studied for nested relational and complex data mod-
ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.
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els (e.g., [Abiteboul and Hull 1988; Hull 1986; Miller et al. 1993; 1994]). [Hull 1986]
proposed several notions of dominance and studied their relationships, which were revis-
ited in [Miller et al. 1993]. The focus of [Abiteboul and Hull 1988; Miller et al. 1994] has
mainly been on the information capacity of type constructs and structural transformation
rules. Our study of information preservation is inspired by the prior work: our notions of
invertibility and query preservation are mild extensions of calculus dominance and query
dominance [Hull 1986]. We revise these notions and study their basic properties for XML
DTD schemas and XML queries, and our focus is to develop the notion of DTD schema
embedding that preserves information by ensuring both effective invertible mapping and
efficient XML query translation.

Query preservation is related to query rewriting using views, which has been extensively
studied for conjunctive and datalog queries for relational databases and regular path queries
on semistructured data (e.g., [Abiteboul and Duschka 1998; Calvanese et al. 2002; Levy
et al. 1995]; see [Halevy 2001; Lenzerini 2002] for surveys). View-based query rewriting
mainly studies whether a given query on the source can be answered using materialized
data from a set of views (lossless), by translating the query to an equivalent query in a par-
ticular language on the views. In contrast, query preservation deals with the issue whether
all queries in an (infinite) query language on an XML source can be rewritten to equiva-
lent queries over XML target (view). Moreover, the focus of this work is to generate XML
“views” that automatically preserves all the queries in an XML query language, rather than
to determine the losslessness of views. Note that Theorem 3.2 establishes a connection be-
tween invertibility and query rewriting; e.g., if the query language � includes the identity
query ��� , then a view K�L is invertible and K Q

�
L is in � iff ��� has a rewriting in � using K�L .

8. CONCLUSIONS

We have revised information-preservation criteria for XML mappings and established sep-
aration, equivalence and complexity results. We have introduced a novel notion of schema
embedding for XML DTD schemas, from which an instance-level XML mapping is automat-
ically derived and is guaranteed to be information preserving, type checking, and able to
accommodate multiple source schemas. While we show that finding a schema embedding
is NP-complete, we have provided heuristic algorithms to compute embeddings, which
are efficient and accurate as shown by our experimental results. These yield a practical
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approach to computing lossless XML data migration and integration.
We plan to extend the notion of schema embedding to (a) accommodate more general

XML schemas with constraints and inheritance, (b) allow one source type to map to dif-
ferent target types in different contexts, (c) allow certain queries in XQuery in the #%$ 
�&
function, and (d) preserve XQuery fragments as query languages.
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MILLER, R. J., HERNÁNDEZ, M. A., HAAS, L. M., YAN, L.-L., HO, C. T. H., FAGIN, R., AND POPA, L.

2001. The Clio project: Managing heterogeneity. SIGMOD Record 30, 1, 78–83.
MILLER, R. J., IOANNIDIS, Y. E., AND RAMAKRISHNAN, R. 1993. The use of information capacity in schema

integration and translation. In VLDB.
MILLER, R. J., IOANNIDIS, Y. E., AND RAMAKRISHNAN, R. 1994. Schema equivalence in heterogeneous

systems: bridging theory and practice. IS 19, 1, 3–31.
MILO, T. AND ZOHAR, S. 1998. Using schema matching to simplify heterogeneous data translation. In VLDB.
OF WASHINGTON, U. XML repository.

http://www.cs.washington.edu/research/xmldatasets.
PALOPOLI, L., SACCA, D., AND URSINO, D. 1998. Semi-automatic semantic discovery of properties from

database schemas. In IDEAS.
RAHM, E. AND BERNSTEIN, P. A. 2001. A survey of approaches to automatic schema matching. VLDB Journal.
SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M. J., MANOLESCU, I., AND BUSSE, R. 2002. XMark: A

Benchmark for XML Data Management. In VLDB.
TATARINOV ET AL, I. 2003. The Piazza peer data management project. SIGMOD Record 32, 3.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2006.


