Integrity Constraints for XML

Wenfei Fan

Temple University fan@joda.cis.temple.edu

Jérôme Siméon

Bell Laboratories simeon@research.bell-labs.com

Abstract

Integrity constraints are useful for semantic specification, query optimization and data integration. The ID/IDREF mechanism provided by XML DTDs relies on a simple form of constraint to describe references. Yet, this mechanism is not sufficient to express semantic constraints, such as keys or inverse relationships, or stronger, object-style references. In this paper, we investigate integrity constraints for XML, both for semantic purposes and to improve its current reference mechanism. We introduce a data model that captures the semantics of DTDs as well as integrity constraints. Several families of constraints are considered, including key, foreign key, inverse constraints and constraints specifying the semantics of object identities. These constraints are useful both for native XML documents and to preserve the semantics of data originating in relational or object databases. Complexity and axiomatization results are established for the (finite) implication problems associated with these constraints. These results also extend relational dependency theory on the interaction between (primary) keys and foreign keys. In addition, we investigate implication of more general constraints, such as functional, inclusion and inverse constraints defined in terms of navigation paths.

1 Introduction

XML [10] is designed to simplify information exchange between Web applications. It relies on a concrete syntax for annotated trees, which is very convenient to represent data from any source, but provides only limited semantic information. A number of recent proposals aim at recovering semantics in XML, following various approaches: type systems [6, 7, 18, 25], description logics [14], metadata descriptions [24], etc. As some of these proposals [7, 25] point out, integrity constraints are important for specifying semantics. In addition, they are useful for query optimization [19], update anomaly prevention [2], and information preservation in data integration [1, 16]. In relational databases, an important application of integrity constraints is to model references, through keys and foreign keys.

The standard XML schema language (i.e. Document Type Definition or DTD) also supports a reference mechanism. The so-called ID (IDREF) attributes provide a means to uniquely identify (refer to) a given element in an XML document. The way ID/IDREF attributes operate resembles the key and foreign key mechanism used in relational databases. Yet, it is neither sufficient to specify semantic constraints such as keys or inverse relationships, nor powerful enough to model object-style references. In response to these problems, this paper investigates the use of integrity constraints in XML. More specifically, we make the following

contributions:

- We introduce a model for XML data with schema and integrity constraints. We define L, L_{id} and L_u , three basic constraint languages that support both a reference mechanism and better semantics. Language L_u is a very simple extension of the original ID/IDREF mechanism, sufficient for native XML documents. L_{id} and L can be used to capture semantic constraints when data originates in object-oriented and relational databases, respectively.
- We study implication and finite implication problems for these three languages. For each language, we provide complexity results and axiomatization when one exists. The results for L extend relational dependency theory. Notably, the implication and finite implication problems for arbitrary keys and foreign keys are shown to be undecidable, but they become decidable when only primary keys are considered.
- We investigate implication of more general forms of constraints, including functional, inclusion and inverse constraints defined in terms of navigation paths, by basic constraints of L_{id} . Such path constraints have a variety of practical applications, ranging from query optimization to verification of the correctness of integration/transformation programs.

This work is motivated by the need for integrity constraints arising from practical XML applications. So before we dive into a more formal presentation, we first illustrate these various application contexts and the deficiencies of the current ID/IDREF mechanism.

The $\ensuremath{\mathrm{ID}/\mathrm{IDREF}}$ mechanism, constraints and references

Let us consider the following XML document in its now familiar syntax.

This document contains information about books. For each book, it gives the isbn, title and publisher in an entry element, then the list of authors, the book content and a set of bibliographical references. This could correspond to the following DTD:

```
<!ELEMENT book
                     (entry, author*,
                      section*, ref)>
<!ELEMENT entry
                     (title, publisher)>
<!ATTLIST entry
          isbn
                             #required>
<!ELEMENT section
                     (title, (text|section)*)>
<!ATTLIST section
                     ID
          sid
                             #required>
<!ELEMENT ref
                     EMPTY>
<!ATTLIST ref
                             #implied>
                     IDREFS
```

In a DTD, each element has an element type and an attribute type description. We omit the descriptions of the elements whose type is string (e.g., PCDATA in XML). The ID annotation indicates that the corresponding attribute should uniquely identify an element. This property must hold on the whole document for all ID attributes. The IDREF(S) annotation indicates a reference, i.e., it should contain a (set of) value(s) of the ID attribute(s) present in the document.

Observe that the ID/IDREF mechanism has similarities to both the identity-based notion of reference from objectoriented databases [3] and keys/foreign keys from relational databases. Like object identifiers, ID attributes uniquely identify elements within the whole document. Because XML relies on a textual format, the reference semantics is obtained by an implicit constraint that must hold on attribute values, in the spirit of keys and foreign keys. Yet, it captures neither the complete semantics of keys nor that of objectstyle references. For instance, isbn should be a key for entry. Its representation as an ID attribute indeed makes it unique, but across all the ID attributes in the document. This is a much stronger assumption, preventing other elements, e.g., book elements from using the same isbn number as a key. Worse still, the scope and type of an ID/IDREF attribute are not clear. The to attribute, for instance, could contain a reference to a section element. Obviously, we would like to constrain such references to entry elements

We can resolve these problems by changing slightly the constraints on the attributes involved. More specifically, we can (i) treat isbn (sid) attribute as a key for entry (section) elements, (ii) add an inclusion constraint, corresponding to a foreign key, asserting that ref. to is a subset of entry.isbn. These can be expressed in our language L_u .

Capturing the semantics of legacy data

A large amount of XML data originates in legacy sources, notably relational and object databases. In these databases, keys, foreign keys and inverse relationships are common [2, 15]. These constraints convey a fundamental part of the original information that we do not want to lose. Consider for instance, the following object-oriented schema (in ODL syntax [15]):

On top of the structure specified by the schema, we have the following: name and dname are keys for the Person and Dept classes respectively, and there is an inverse relationship between Person.in_dept and Dept.has_staff.

When exporting this object database to XML, the following DTD could be generated, trying to preserve most of the original schema:

```
<!ELEMENT db (person*, dept*)>
<!ELEMENT person (name, address)
<! ATTLIST person
                       TD
          oid
                                 #required
                       IDREFS
          in_dept
                                 #implied>
<!ELEMENT dept (dname)>
<!ATTLIST dept
          oid
                       ID
                                 #required
          manager
                       IDREF
                                 #required
          has_staff
                       IDREFS
                                 #implied>
```

Here the original ID semantics is appropriate to capture the notion of object identifiers [3] (see the oid attribute). However, references through IDREF are weaker: because IDREF attributes are "untyped", we no longer know that the person.in_dept attribute should reference departments. In addition, as in the previous example, keys are not precisely captured (here we cannot even use ID for name and dname as XML only allows one single ID attribute). Last, we have no way to express the inverse relationships. We want to overcome these limitations while preserving the semantics of the original notion of object identities. To do so, we can add the following constraints to the original DTD's semantics: (i) an inclusion constraint to specify that person.in_dept refers to departments only; (ii) more than one key for persons and departments; (iii) an inverse constraint between person.in_dept and dept.has_staff. These can be expressed in our language L_{id} .

```
<!ELEMENT publishers (publisher*)>
<!ELEMENT publisher (pname,country,address)>
<!ELEMENT editors (editor*)>
<!ELEMENT editor (name,pname,country)>
```

We would also like to capture the semantic constraints from the relational database: (pname, country) is a key for relation publishers, name is a key for relation editors, and (pname, country) is a foreign key in editors referencing publishers. To do so, we need to be able to express constraints on sub-elements (and not only attributes), as well as the typical relational keys and foreign keys by means of attributes. These are captured by our language L.

Implication problems for XML constraints and related work

There is a large body of work on integrity constraints in the relational context [2, 27] that we can try to exploit. An important remark is that ID and IDREF attributes are unary. As a consequence, the work on (unary) inclusion and functional dependencies by Cosmadakis, Kanellakis and Vardi [17] is particularly relevant. However, because of the semantics of ID attributes, results from [17] are not directly applicable in the XML context. Another difference is due to the more complex structure of XML documents, for instance the presence of set-valued attributes (see the IDREFS attribute in our first example). Our results, especially those on L_{id} constraint implication, address these issues. As language L is designed to capture semantic constraints from relational databases, it fits more directly into the relational setting. Yet, to the best of our knowledge, implication problems for general/primary keys and foreign keys have never been addressed before.

XML documents can have arbitrarily nested structures (note that the section elements from the book DTD have a recursive definition). It is therefore natural to consider both (unrestricted) implication and finite implication problems. This also highlights the importance of path constraints in this context. As an example, we would like to know that isbn is not only a key for entry, but also a key for the outer book elements. This never occurs in the relational setting.

Path constraints have been studied formally in [4, 11, 12, 13, 22, 23, 28. The path constraint languages introduced in [4, 11, 12, 13] specify inclusions among certain sets of objects, and are studied for semistructured data and XML. They are capable of expressing (unary) foreign key constrains. Inverse constrains are also expressible in the languages of [11, 12, 13]. However, these languages cannot express key constraints. [22] studies extended functional dependencies for nested relations. Another generalization of functional dependencies, called path functional dependencies, has been investigated for a restricted object-oriented data model in [23, 28]. These generalizations of functional dependencies are capable of expressing neither foreign keys nor inverse constraints. Furthermore, they are studied in the context of data constrained by type systems. As shown in [12], the interaction between path constraints and type constraints is not simple. More precisely, path constraint implication has wildly different complexities in the presence and absence of type systems.

Finally, we address the connection between our XML constraints and bounded variable logics, in particular, two-variable first-order logic (FO^2) . FO^2 is the fragment of first-order logic consisting of all relational sentences with at most two distinct variables. Recently, Grädel, Kolaitis and Vardi have shown that the satisfiability and finite satisfiability problems for FO^2 are NEXPTIME-complete [21]. It should be mentioned that many constraints considered here are not expressible in FO^2 , including foreign key constraints

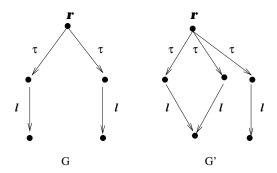


Figure 1: Structures distinguishable by key constraint

of L, inverse constraints of L_{id} and L_u , and (unary) key constraints of all three languages. These can be verified by using the 2-pebble Ehrenfeucht-Fraïssé (EF) style game [5]. As an example, consider the structures G and G' given in Figure 1. Using 2-pebble EF game, one can show that G and G' are equivalent in FO^2 . However, they are distinguished by the unary key constraint $\varphi = \tau.l \to \tau$, i.e.,

$$\forall x y (\exists z (l(x, z) \land l(y, z)) \rightarrow x = y).$$

This constraint asserts that for any τ -elements x, y, if x and y have the same l-attribute value, then they are equal. Observe that $G \models \varphi$ but $G' \not\models \varphi$. This shows that φ is not expressible in FO^2 .

As shown by Borgida [9], FO^2 is equally expressive as $DL - \{trans, compose, at_least, at_most\}, i.e., description$ logic omitting the transitive closure and composition constructors as well as counting quantifiers. As an immediate result, many XML constraints considered here are not expressible in $DL - \{trans, compose, at_least, at_most\}$. [9] has also shown that description logic with the composition constructor, i.e., $DL - \{trans, at_least, at_most\}$, has equivalent expressive power as FO^3 , the fragment of first-order logic with at most three distinct variables and with monadic and binary relations. It is known that FO^3 possesses undecidable satisfiability and finite satisfiability problems [8]. In contrast, we shall show that most of the implication and finite implication problems associated with our constraint languages are decidable. Therefore, results about DL are not much of help for implication of our constraints.

Organization

The rest of the paper is organized as follows. Section 2 presents the XML data model with schema and constraints, defines the constraint languages L, L_{id} and L_u , and show how they capture the examples above. Section 3 investigates implication, finite implication and axiomatization problems associated with these constraint languages. Section 4 studies implication of path constraints by basic constraints of L_{id} . Section 5 concludes the paper.

2 Capturing XML document semantics

In this section, we present a data model and a formalization of DTDs [10]. The data model represents the content of XML documents, and DTDs specify the structure and semantics of the data. We formalize a DTD as a structural specification and a set of integrity constraints. We will use various families of constraints to specify various extensions over DTD structures. The clear separation between structural and integrity constraints yields a robust framework. In particular, most of our results on integrity constraints are easily extensible to other XML type systems [7, 16, 6].

2.1 Documents

We begin with the data model for representing XML documents. In the following, we assume the existence of a set $\mathbf E$ of element names, a set $\mathbf A$ of attribute names, and a set $\mathbf S$ of string values. We assume, without loss of generality, that all atomic values are of the same type, denoted by $\mathbf S$. We also assume an infinite set $\mathbf V$ of vertices. Given a set X, we use F(X) and P(X) to denote the set of all lists built over elements of $\mathbf X$ and the power-set of $\mathbf X$, respectively. We represent XML documents as ordered annotated trees with labels on the nodes.

Definition 2.1: A data tree is denoted by (V, elem, att, root), where

- V is a set of vertices, i.e., a subset of V;
- elem is a function mapping vertices to their labels and children, i.e., from V to $\mathbf{E} \times F(\mathbf{S} \cup V)$, and defining a tree, i.e., a vertex has at most one parent;
- att is a partial function from vertex and attribute name pairs to a set of atomic values, i.e., from $V \times \mathbf{A}$ to $P(\mathbf{S})$;
- root is a distinguished element of V called the root of the tree.

Intuitively, V is the set of (internal) vertices of the tree. The function elem indicates for each node its label (an element name) and its list of children (either string values or sub-trees). The function att defines the attributes of each node. In XML, the attributes of an element are unordered and each contains a set of atomic values. We will use DTDs to specify the structure and semantics of data trees. Figure 2 shows a data tree depicting our book document given in Section 1. Note that the indications about the ID/IDREF semantics of attributes assume the corresponding DTD is available.

We will use the following notations. For any $\tau \in E$, we use $ext(\tau)$ to denote the set of nodes labeled τ in V. For any $x \in V$ and $l \in \mathbf{A}$, we use x.l to indicate att(x, l), i.e., the value of the attribute l for x. We define $ext(\tau).l$ to be $\{x.l \mid x \in ext(\tau)\}$. Furthermore, let X be a sequence of attributes $(l_1, ..., l_n)$. We use x[X] to denote $(x.l_1, ..., x.l_n)$.

2.2 Document Type Definitions

We use DTD with constraints to capture the semantics of XML documents. We first describe the structural specifications, then introduce the constraint languages.

Document Structure

In the literature [6, 14, 26], DTDs are often modeled as Extended Context Free Grammars (ECFGs), with elements as non-terminals, basic XML types as terminals and element definitions (with regular expressions) as productions. While ECFGs can specify the syntactic structure of elements, they

fail to describe attributes, notably the ID/IDREF mechanism. Here we start from ECFGs [14] and extend them to capture attributes.

Definition 2.2: A *DTD Structure* is denoted by

$$S = (E, P, R, kind, r),$$

where:

- E is a finite set of element types in E, ranged over by τ;
- P is a function from element types to element type definitions: $P(\tau) = \alpha$, where α is a regular expression, defined as follows:

$$\alpha ::= S \mid e \mid \epsilon \mid \alpha + \alpha \mid \alpha, \alpha \mid \alpha^*$$

where S is the type of atomic values given above, $e \in E$, ϵ denotes the empty element, "+" stands for union, "," for the concatenation, and "*" for the Kleene closure.

• R is a partial function over $E \times \mathbf{A}$ to attribute type definitions: $R(\tau, l) = \beta$, where τ is an element name in E, l is an attribute name in \mathbf{A} and β is either S or S^*

We use $Att(\tau)$ to denote the set of attributes of τ , i.e., $\{l \in \mathbf{A} \mid R(\tau, l) \text{ is defined}\}$. An attribute l is called a set-valued attribute of τ if $R(\tau, l) = \mathbf{S}^*$, and a singled-valued otherwise.

 kind is a partial function identifying the ID and IDREF attributes, from E × A to {ID, IDREF}.

We assume that for any $\tau \in E$ and $l \in \mathbf{A}$, if $kind(\tau, l)$ is defined then so is $R(\tau, l)$. Moreover, there exists at most one attribute l_o such that $kind(\tau, l_o) = ID$. In addition, l_o must be single-valued. We use $\tau.id$ to denote the ID attribute $\tau.l_o$, when it exists.

• $r \in E$ is the element type of the root.

Document Constraints

Next, we introduce the three constraint languages that we will use in the remainder of the paper.

Language L. The first language, L, will be used to capture integrity constraints from relational databases. Therefore, it defines the classical key and foreign key constraints [2]. For a DTD Structure, S = (E, P, R, kind, r), a constraint of L has one of the following forms:

• Key constraint: $\tau[X] \to \tau$, where $\tau \in E$ and X is a set of single-valued attributes in $Att(\tau)$. It asserts

$$\forall \, x \, y \in ext(\tau) \; (\bigwedge_{l \in X} (x.l = y.l) \to x = y)$$

i.e., X is a key for τ .

• Foreign key constraint: $\tau[X] \subseteq \tau'[Y]$, where $\tau, \tau' \in E$, X, Y are sequences of single-valued attributes in $Att(\tau)$ and $Att(\tau')$, respectively, and X and Y have the same length. In addition, Y is the key of τ' , i.e., $\tau'[Y] \to \tau'$. It asserts that

$$\forall x \in ext(\tau) \ \exists \ y \in ext(\tau') \ (x[X] = y[Y]),$$

i.e., X is a foreign key of τ referring to τ' .

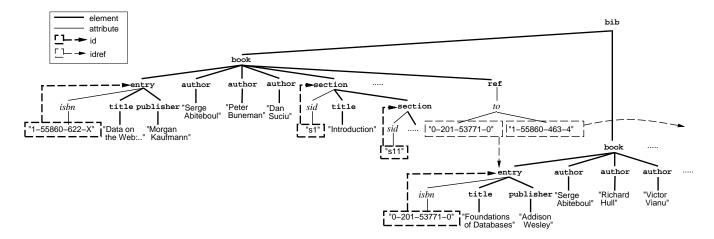


Figure 2: Graph representation of an XML document

Language L_u . The purpose of language L_u is to provide a minimal extension of DTDs that captures keys, references and inverse constraints. In L, a key may be composed of several attributes. In XML, references are always unary, i.e., via a single attribute. In addition, XML supports IDREFS attributes, that is, attributes that are set-valued and have an IDREF kind. To be as close to the original XML as possible, we consider L constraints in which the sequences X, Y consist of a single attribute. We refer to such constraints as unary constraints, and write x[l] as x.l. Moreover, we study set-valued foreign keys and inverse constraints. Based on the considerations about the book document from the introduction, we then assume that the ID value of an element is unique among elements of the same type, rather than within the entire document.

Therefore, we define L_u to contain unary constraints of L as well as set-valued foreign key constraints and inverse constraints. More specifically, a constraint of L_u has one of the following forms:

- Unary key constraint of $L: \tau . l \to \tau$.
- Unary foreign key constraint of $L: \tau . l \subseteq \tau' . l'$.
- Set-valued foreign key constraint: $\tau.l \subseteq_S \tau'.l'$. Here $\tau, \tau' \in E$, l is a set-valued attribute of τ and l' is a single-valued attribute of τ' such that $\tau'.l' \to \tau'$. It asserts

$$\forall x \in ext(\tau) \ (x.l \subseteq ext(\tau').l').$$

• Inverse constraint: $\tau(l_k).l \rightleftharpoons \tau'(l_k').l'$. Here we have $\tau, \tau' \in E, l, l'$ are set-valued attributes of τ, τ' , respectively, and l_k, l_k' are single-valued attributes of τ, τ' such that $\tau.l_k \to \tau$ and $\tau'.l_k' \to \tau'$. It asserts

$$\forall x \in ext(\tau) \,\forall y \in ext(\tau') \ (x.l_k \in y.l' \to y.l_k' \in x.l),$$

$$\forall x \in ext(\tau') \,\forall y \in ext(\tau) \ (x.l_k' \in y.l \to y.l_k \in x.l').$$

It should be noted we need to specify explicitly which keys are involved in an inverse constraint.

Constraints of L_u provide a simple reference mechanism that can be viewed as an extension of the one used in relational databases to the XML context.

It should be noted that the kind function of the DTD Structure is not used when defining L and L_u constraints.

More specifically, in L and L_u , keys are not necessarily ID attributes and likewise, foreign keys do not have to be IDREF attributes.

Language L_{id} . Finally, we want a language that preserves the semantic of identifiers from object databases. To do so, we keep the original semantics of ID attributes, whose value is unique within the whole document. Yet, we want to extend it with key and inverse constraints. To capture these, we define the language L_{id} that consists of unary key constraints of L and the following:

- Unary key constraint of $L: \tau . l \to \tau$.
- ID constraint: $\tau.id \to_{id} \tau$, where $\tau \in E$ and there is $l \in Att(\tau)$ such that $kind(\tau, l) = ID$. It asserts

$$\begin{array}{l} \forall\,x\in ext(\tau)\,\exists\,s\in\mathbf{S}\,(x.id=s\,\wedge\\ \forall\,y\,(y.id=s\to x=y))\,. \end{array}$$

• Foreign key constraint: $\tau.l \subseteq \tau'.id$. Here we have $\tau, \tau' \in E, l \in A, kind(\tau, l) = IDREF, l$ is a single-valued attribute of τ , and moreover, $\tau'.id \rightarrow_{id} \tau'$. It asserts

$$\forall \, x \in ext(\tau) \; (x.l \in ext(\tau').id).$$

• Set-valued foreign key constraint: $\tau.l \subseteq_S \tau'.id$. Here $\tau, \tau' \in E, \ l \in \mathbf{A}, \ kind(\tau, l) = IDREF$, and l is a set-valued attribute of τ . Moreover, $\tau'.id \rightarrow_{id} \tau'$. It asserts

$$\forall x \in ext(\tau) \ (x.l \subseteq ext(\tau').id).$$

• Inverse constraint: $\tau.l \rightleftharpoons \tau'.l'$. Here we have $\tau, \tau' \in E$, $l, l' \in \mathbf{A}$, $kind(\tau, l) = kind(\tau', l') = IDREF$, l and l' are both set-valued attributes, and moreover, τ and τ' have ID attributes, i.e., $\tau.id \rightarrow_{id} \tau$ and $\tau'.id \rightarrow_{id} \tau'$. It asserts that there is an inverse relationship between l and l'. Formally, that is:

$$\forall x \in ext(\tau) \, \forall y \in ext(\tau') \ (x.id \in y.l' \to y.id \in x.l)$$
$$\forall x \in ext(\tau') \, \forall y \in ext(\tau) \ (x.id \in y.l \to y.id \in x.l')$$

Language L_{id} improves the original XML reference mechanism by imposing typing and scoping constraints on the attributes. It also supports inverse constraints and unary key constraints.

We will refer to the constraints of these languages as the $basic\ XML\ constraints$.

Finally, we define DTDs with constraints as follow.

Definition 2.3: A Document Type Definition with constraints (or DTD^{C}) is denoted by $D = (S, \Sigma)$, where:

- S is a DTD Structure,
- Σ is a set of basic XML constraints expressed in one of the constraint languages defined above.

2.3 Valid documents

Given a DTD^C , we can define the notion of valid documents, i.e., documents that conform to it.

Definition 2.4: Let $D = ((E, P, R, kind, r), \Sigma)$ be a DTD^C and G = (V, elem, att, root) be a data tree. We say that G is valid with respect to D if and only if there is a mapping $\mu: V \cup S \to E \cup \{S\}$, such that:

- $\mu(root) = r$,
- for any s in S, $\mu(s) = S$,
- for any $v \in V$ such that $elem(v) = (e, [v_1, \ldots, v_n])$, with $P(e) = \alpha$, then $e = \mu(v)$ and $[\mu(v_1), \ldots, \mu(v_n)]$ belongs to the regular language defined by α ,
- for any $v \in V$ and $l \in \mathbf{A}$, att(v, l) is defined if and only if $R(\mu(v), l)$ is defined. Moreover, if l is a single-valued attribute of τ , then att(v, l) must be a singleton set,
- $G \models \Sigma$.

We borrow the standard notion of models from logic. Let φ be a constraint and G a data tree. We use $G \models \varphi$ to denote that G satisfies φ , i.e., G is a model of φ . Let Σ be a set of constraints. We use $G \models \Sigma$ to indicate that G satisfies all the constraints in Σ . Note that the function kind does not appear in the definition of validity but is implicitly used in constraint satisfaction (only for language L_{id} though). Indeed, by requiring $G \models \Sigma$, we can view attributes as references to other elements.

2.4 Examples

We now reexamine the examples given in Section 1 and show how their semantics can be captured by a DTD^{C} , using the different constraint languages L_{id} , L_{u} and L.

We start with the book document. To specify its structure, we define $D = ((E, P, R, kind, r), \Sigma)$, a DTD^C with constraints in L_u , as follows.

```
\begin{array}{lll} E &= \{ \ \mathsf{book}, \mathsf{entry} \ , \mathsf{section} \ , \mathsf{ref} \ \} \\ P(\mathsf{book}) &= \ (\mathsf{entry}, \ \mathsf{author}^*, \ \mathsf{section}^*, \ \mathsf{ref}) \\ P(\mathsf{entry}) &= \ (\mathsf{title}, \ \mathsf{publisher}) \\ P(\mathsf{section}) &= \ (\mathsf{text} + \mathsf{section})^* \\ P(\mathsf{ref}) &= \epsilon \\ R(\mathsf{entry}, \ \mathsf{isbn}) &= \mathsf{S} \\ R(\mathsf{section}, \ \mathsf{sid}) &= \mathsf{S} \\ R(\mathsf{ref}, \ \mathsf{to}) &= \mathsf{S}^* \end{array}
```

```
 \begin{array}{ll} r &=& \mathsf{book} \\ \Sigma &=& \{ \ \mathsf{entry.isbn} \ \rightarrow \ \mathsf{entry}, \\ \mathsf{section.sid} \ \rightarrow \ \mathsf{section}, \\ \mathsf{ref.to} \ \subseteq_{S} \ \mathsf{entry.isbn} \ \} \end{array}
```

Note that we can keep the function *kind* empty as we do not use the original ID/IDREF semantics. Note also the use of a set-valued foreign key to capture the semantics of the set-valued ref attribute.

We next give a DTD^C with constraints in L_{id} to describe the structure of our person/dept object-oriented database: $D_o = ((E_o, P_o, R_o, kind_o, r_o), \Sigma_o)$, with:

```
E_o = \{ \ \mathsf{db}, \mathsf{person} \ , \mathsf{dept} \ , \mathsf{name} \ , \mathsf{address} \ , \mathsf{dname} \ \}
                  = (person*, dept*)
P_o(\mathsf{db})
P_o(person)
                  = (name, address)
P_o(\mathsf{dept})
                   = dname
R_o(\mathsf{person}, \mathsf{oid})
                                    S,
R_o(\mathsf{person}, \mathsf{in\_dept})
                                = S
R_o(\mathsf{dept}, \mathsf{oid})
R_o(\mathsf{dept}, \mathsf{manager})
                                = S
R_o(\mathsf{dept}, \mathsf{has\_staff})
kind_o(person, oid)
                                    = ID
kind_o(person, in\_dept) = IDREF
kind_o(\mathsf{dept}, \mathsf{oid})
                                    = ID
                                    = IDREF
kind_o(dept, manager)
kind_o(\mathsf{dept}, \mathsf{has\_staff})
                                    = IDREF
r_o = \mathsf{db}
\Sigma_o = \{ 	ext{ person.oid }
                             \rightarrow_{id} person,
            dept.oid
                              \rightarrow_{id} dept,
            person.name \rightarrow person,
            dept.dname → dept,
            person in dept \subseteq_S dept oid,
            dept manager ⊆ person oid,
            \mathsf{dept.has\_staff} \quad \subseteq_S \quad \mathsf{person.oid}
            dept.has_staff  

⇒ person.in_dept }
```

In Section 3.4, we will show how to extend L_{id} to specify constraints in terms of sub-elements. Thus we do not have to redefine name, dname as attributes. Note here we specify key constraints in addition to object identities.

Finally, consider the publisher DTD given in Section 1. We use the following constraints in language L to specify that pname, country are a key of publisher and a foreign key of editor referring to publisher.

```
publisher[pname, country] \rightarrow publisher
editor[pname, country] \subseteq publisher[pname, country]
```

3 Implication of basic XML constraints

In this section, we investigate the question of logical implication in connection with basic XML constraints: given that certain constraints are known to hold, does it follow that some other constraint necessarily holds? We examine the question for L_{id} , L_u and L defined in the last section. For each of these constraint languages, we establish complexity results for its implication and finite implication problems. We also provide axiomatization if one exists. These results are useful for, among others, studying XML semantics and query optimization. Some of these results are also applicable to relational databases. At the end of the section, we extend our constraint languages to incorporate sub-elements.

We first give a formal description of the implication problems for XML constraints. Let C be either L_{id} , L_u or L, and $\Sigma \cup \varphi$ is a finite subset of C. Let D be a DTD^C , as described in Definition 2.3, such that Σ is the set of constraints in D. We use $\Sigma \models \varphi$ (resp. $\Sigma \models_f \varphi$) to denote that for any (resp. finite) data tree G of D, if $G \models \Sigma$ then $G \models \varphi$.

The (finite) implication problem for C is to determine, for any finite subset $\Sigma \cup \varphi$ of C, whether for any DTD^C D with the set Σ of constraints, $\Sigma \models \varphi$ ($\Sigma \models_f \varphi$).

3.1 Implication of L_{id} constraints

We first study the constraint language L_{id} . In L_{id} , an ID constraint asserts that an ID attribute value uniquely identifies an element within the entire document. An element has at most one ID, and is referred to by means of its ID attribute. As mentioned earlier, this reference mechanism is similar to the one used in object-oriented databases.

A finite axiomatization \mathcal{I}_{id} for L_{id} is given below:

• ID-FK:
$$\frac{\tau.id \to_{id} \tau}{\tau.id \subset \tau.id}$$

• FK-ID:
$$\frac{\tau . l \subseteq \tau' . id}{\tau' . id \rightarrow_{id} \tau'}$$

• SFK-ID:
$$\frac{\tau.l \subseteq_S \tau'.id}{\tau'.id \rightarrow_{id} \tau'}$$

• Inv-SFK-ID:
$$\frac{\tau.l \rightleftharpoons \tau'.l'}{\tau.l \subseteq_S \tau'.id \qquad \tau'.l' \subseteq_S \tau.id}$$

It is easy to verify the following.

Proposition 3.1: (1) \mathcal{I}_{id} is sound and complete for both implication and finite implication of L_{id} . (2) The implication and finite implication problems for L_{id} are decidable in linear time.

3.2 Implication of L_u constraints

We next consider the constraint language L_u . In L_u , a key constraint states that a key is unique among the elements of the same type, rather than within the whole document. An element may have more than one key, and is referred to by means of any one of its keys.

We present a finite axiomatization \mathcal{I}_u for implication of L_u constraints as follows.

• UK-FK:
$$\frac{\tau . l \to \tau}{\tau . l \subset \tau . l}$$

• UFK-K:
$$\frac{\tau . l \subseteq \tau' . l'}{\tau' . l' \to \tau'}$$

• SFK-K:
$$\frac{\tau.l \subseteq_S \tau'.l'}{\tau'.l' \to \tau'}$$

• UFK-trans:
$$\frac{\tau_1.l_1 \subseteq \tau_2.l_2 \qquad \tau_2.l_2 \subseteq \tau_3.l_3}{\tau_1.l_1 \subseteq \tau_3.l_3}$$

• USFK-trans:
$$\frac{\tau_1.l_1 \subseteq_S \tau_2.l_2 \qquad \tau_2.l_2 \subseteq \tau_3.l_3}{\tau_1.l_1 \subseteq_S \tau_3.l_3}$$

• Inv-SFK:
$$\tau(l_k).l \rightleftharpoons \tau'(l'_k).l' \quad \tau.l_k \to \tau \quad \tau'.l'_k \to \tau'$$

Observe that we do not have the rule: if $\tau_1.l_1 \subseteq \tau_2.l_2$ and $\tau_2.l_2 \subseteq_S \tau_3.l_3$ then $\tau_1.l_1 \subseteq_S \tau_3.l_3$. This is because key attributes cannot be set-valued.

Cosmadakis, Kanellakis and Vardi have shown [17] that in relational databases, implication and finite implication of unary inclusion and functional dependencies are different problems. In other words, implication of these dependencies does not have the finite model property. In addition, for any fixed integer k, there is no k-ary axiomatization for finite implication. Instead, there is a cycle rule for each odd positive integer. This is also the case for L_u . More specifically, for finite implication of L_u , we also have cycle rules: for each positive integer k, there is a cycle rule Ck:

Let \mathcal{I}_u^f consist of \mathcal{I}_u rules and Ck for each positive integer k. We can verify the following.

Theorem 3.2: (1) \mathcal{I}_u is sound and complete for implication of L_u . (2) \mathcal{I}_u^f is sound and complete for finite implication of L_u .

The idea of the proof is borrowed from the proof of the result of [17] mentioned above, with modifications to deal with set-valued foreign key and inverse constraints.

Using \mathcal{I}_u and \mathcal{I}_u^f , we can develop a linear-time algorithm for testing implication of L_u , and a linear-time algorithm for testing finite implication of L_u .

Corollary 3.3: The implication and finite implication problems for L_u are both decidable in linear time, but these problems do not coincide.

To be even closer to the original XML semantics for ID attributes, we consider a primary key restriction. This restriction requires that for any element type τ , there is at most one attribute l such that l is a key of τ , i.e., $\tau.l \to \tau$. Elements of τ can only be referred to by using their l attribute. As a result, the cycle rule does not apply here. In addition, we cannot have both $\tau_1.l_1 \subseteq \tau.l$ and $\tau_2.l_2 \subseteq \tau.l'$ if $l \neq l'$.

Interestingly, the primary key restriction simplifies the analysis of L_u constraint implication. Indeed, the implication and finite implication problems for L_u coincide in this setting, which is a departure from [17].

Theorem 3.4: Under the primary key restriction, \mathcal{I}_u is sound and complete for both implication and finite implication of L_u .

It is easy to verify that a similar result also holds for relational databases.

Corollary 3.5: In relational databases, the implication and finite implication problems for primary unary key and foreign key constraints coincide and are decidable in linear time.

3.3 Implication of L constraints

Next, we investigate constraint language L. In L, one can express multi-attribute keys and foreign keys that are com-

mon in relational databases. As observed by [7], these constraints are also of practical interest for native XML.

The analysis of L constraint implication, however, is not a trivial problem.

Theorem 3.6: The implication and finite implication problems for L are undecidable.

This result also holds for relational databases.

Corollary 3.7: In relational databases, the implication and finite implication problems for keys and foreign keys are undecidable.

This can be proved by reduction from the implication and finite implication problems for inclusion and functional dependencies, which are well-known undecidable problems (see, e.g., [2] for a corresponding proof).

The undecidability result suggests that we examine L constraint implication under the primary key restriction. That is, we assume that for any element type $\tau \in E$, there is at most one subset X of single-valued attributes in $Att(\tau)$ such that $\tau[X] \to \tau$, and moreover, for any proper subset Y of X, $\tau[Y] \not\to \tau$. When the primary key restriction is placed, we refer to the constraints as primary key and foreign key constraints.

The primary key restriction simplifies reasoning about L constraints. Indeed, under this restriction, implication and finite implication of L constraints become axiomatizable. More specifically, we present an axiomatization \mathcal{I}_p as follows:

• PK-FK:
$$\frac{\tau[X] \to \tau}{\tau[X] \subseteq \tau[X]}$$

• PFK-K:
$$\frac{\tau[X] \subseteq \tau'[Y]}{\tau'[Y] \to \tau'}$$

• PFK-perm: for each sequence $i_1, i_2, ..., i_n$ of distinct integers in [1, ..., n],

$$\frac{\tau[l_1,\, l_2,\, ...,\, l_n] \subseteq \tau'[l_1',\, l_2',\, ...,\, l_n']}{\tau[l_{i_1},\, l_{i_2},\, ...,\, l_{i_n}] \subseteq \tau'[l_{i_1}',\, l_{i_2}',\, ...,\, l_{i_n}']}$$

• PFK-trans:
$$\frac{\tau_1[X] \subseteq \tau_2[Y] \quad \tau_2[Y] \subseteq \tau_3[Z]}{\tau_1[X] \subseteq \tau_3[Z]}$$

Theorem 3.8: Under the primary key restriction, \mathcal{I}_p is sound and complete for both implication and finite implication of L constraints.

Observe that under the primary key restriction, the implication and finite implication problems for L coincide.

To prove the completeness of \mathcal{I}_p , it suffices to construct a data tree G such that $G \models \Sigma$ and moreover, if $\Sigma \not\vdash_{\mathcal{I}_p} \varphi$, then $G \not\models \varphi$. The construction of G takes advantage of the primary key restriction and uses a simple algorithm to populate $ext(\tau)$ for each element type τ . The interested reader should see [20] for a detailed proof.

This result is also applicable to relational databases.

Corollary 3.9: In relational databases, the implication and finite implication problems for primary keys and foreign keys coincide and are decidable.

To our knowledge, no previous work has considered the interaction between (primary) keys and foreign keys in re-

lational databases and the results established here extend relational dependency theory.

3.4 Sub-elements as keys and foreign keys

In the XML standard [10], sub-elements are not allowed to participate in the reference mechanism. To be consistent with this approach, we have so far used only attributes in our constraints. A natural question here is whether sub-elements can also be used as keys and foreign keys. As an example, let us consider the element type definition of person given in Section 1:

It is perfectly reasonable to assume that name is a key for person. This was easily captured in our corresponding DTD specification (see D_o in Section 2.4), by including

$$person.name \rightarrow person$$

in the constraint set (Σ_o) . This suggests that we extend the definition of key constraints in L_{id} . Let τ be specified by an element type definition $P(\tau) = \alpha$ and S be a sub-element of τ . We may specify constraint of the form

$$\tau.S \to \tau$$

if S is a unique sub-element of τ , i.e., for any $w \in L(\alpha)$, S occurs exactly once in w, where $L(\alpha)$ is the regular language defined by α . This is a syntactic restriction that can be checked by examining the DTD. It is easy to verify that the results established in Section 3.1 still hold for this extension.

Along the same lines, we extend the definitions of key and foreign key constraints in L_u and L to incorporate subelements. It can be verified that the results of Sections 3.2 and 3.3 also apply to the corresponding extensions. In the rest of the paper, we will allow key constraints to be specified in terms of sub-elements.

4 Implication of path constraints

Navigation paths are commonly used in XML query languages. Constraints defined in terms of paths are useful for, among others, query optimization. Let us refer to such constraints as path constraints. In this section, we study implication of certain path constraints by basic XML constraints given in a DTD^C . More specifically, we examine three forms of path constraints, referred to as path functional, inclusion and inverse constraints. To do this, we first describe the notion of paths. Then we define path constraints and investigate their implication by basic XML constraints. In this section we assume that basic XML constraints are expressed in L_{id} .

4.1 Paths

A path is a sequence of node labels. More specifically, let D be a DTD^C $((E,P,R,kind,r),\Sigma)$. In a data tree G of D, a path is a sequence of symbols in $E \cup \mathbf{A}$ that are labels of a sequence of nodes. For example, paths in Figure 2 include $book.entry,\ book.author,\ book.ref.to.author.$ Observe that we treat attribute to as a references from a ref element to an entry element.

To be precise, we give a formal definition of paths. For any element type $\tau \in E$, we define the set of paths of τ , denoted by $paths(\tau)$, and for any $\rho \in paths(\tau)$, we define the type of ρ , denoted by $type(\tau,\rho)$, as follows.

- $\epsilon \in paths(\tau)$ and $type(\epsilon) = \tau$.
- Assume $\rho \in paths(\tau)$ with $type(\tau \cdot \rho) = \tau_1$.
 - For any $l \in Att(\tau)$, $\rho.l$ is in $paths(\tau)$. If there exists $\tau_2 \in E$ such that either $\Sigma \models \tau_1.l \subseteq \tau_2.id$ or $\Sigma \models \tau_1.l \subseteq s$ $\tau_2.id$, then $type(\tau.\rho.l) = \tau_2$. Otherwise $type(\tau.\rho.l) = S$.
 - Suppose that the element type definition of τ_1 is $P(\tau_1) = \alpha$. For any $\tau_2 \in E \cup \{S\}$ that occurs in α , $\rho.\tau_2$ is in $paths(\tau)$ and $type(\tau.\rho.\tau_2) = \tau_2$.

Here $Att(\tau)$ is the set of attributes of τ as defined in Definition 2.2. By the definition of L_{id} , one can easily verify that for any $\tau \in E$ and $\rho \in paths(\tau)$, there is a unique τ' such that $type(\tau,\rho) = \tau'$. That is, $type(\tau,\rho)$ is well-defined.

For any data tree G of D, any $x \in ext(\tau)$ in G and $\rho \in paths(\tau)$, we define the set of vertices reachable from x via ρ , denoted by $nodes(x,\rho)$, as follows.

- If $\rho = \epsilon$, then $nodes(x.\rho) = \{x\}$.
- If $\rho = \varrho.\tau_1$ and $\tau_1 \in E$, then for any $y \in nodes(x.\varrho)$, children of y labeled with τ_1 are in $nodes(x.\rho)$.
- For $\rho = \varrho.l$ and $l \in \mathbf{A}$, if $type(\tau.\varrho) = \mathsf{S}$, then for any $y \in nodes(x.\varrho)$ and $z \in y.l$, z is in $nodes(x.\varrho)$. Otherwise we have $type(\tau.\varrho) = \tau_1$ and $\Sigma \models \tau_1.l \subseteq \tau_2.id$ (resp. $\Sigma \models \tau_1.l \subseteq_S \tau_2.id$) for some $\tau_2 \in E$. For any $y \in nodes(x.\varrho)$ and any vertex z labeled τ_2 such that z.id = y.l (resp. $z.id \in y.l$), z is in $nodes(x.\varrho)$.

We use $ext(\tau,\rho)$ to denote the set of vertices reachable from τ elements by following ρ , i.e,

$$ext(\tau.\rho) = \bigcup_{x \in ext(\tau)} nodes(x.\rho).$$

4.2 Path constraints

Next, we define path constraints and investigate their implication by L_{id} constraints.

Path functional constraints. Let D be a DTD^C as described in Definition 2.3: $((E, P, R, kind, r), \Sigma)$. A path functional constraint φ of D is an expression of the form

$$\tau.\rho \rightarrow \tau.\varrho$$
,

where $\tau \in E$ and $\rho, \varrho \in paths(\tau)$. For any data tree G of D, we use $G \models \varphi$ to denote that in G,

$$\forall \, x, \, y \in ext(\tau) \, (nodes(x.\rho) = nodes(y.\rho) \rightarrow \\ nodes(x.\varrho) = nodes(y.\varrho))$$

As an example, let us consider the book document given in Section 1. The constraint φ below is an example of path functional constraints of the book DTD^C .

$$\varphi = book \cdot entry \cdot isbn \rightarrow book \cdot author.$$

Constraint φ states that the isbn of the entry of a book determines the authors of the book.

Suppose that isbn is a key of entry. That is, the set of basic XML constraints, Σ , in the book DTD^C given in Section 2.4 includes:

$$entry . isbn \rightarrow entry$$

Given that Σ holds, one may ask whether φ also holds. In general, given D, a DTD^C with a set Σ of L_{id} constraints, we want to know whether a path functional constraint φ is implied by Σ . That is, whether for any data tree G of D, if $G \models \Sigma$ then $G \models \varphi$.

About implication of path functional constraints by L_{id} constraints we have the following result.

Proposition 4.1: For any D, a DTD^C with a set of constraints Σ , and any path functional constraint φ , whether $\Sigma \models \varphi \ (\Sigma \models_f \varphi)$ is decidable in $O(|\varphi|(|\Sigma| + |P|))$ time, where P is the set of element type definitions in G, and $|\Sigma|$, |P|, $|\varphi|$ are the lengths of Σ , P, φ , respectively.

To prove Proposition 4.1, it suffices to show $\Sigma \models \tau.\rho \rightarrow \tau.\varrho$ iff ρ is a $key\ path$ of τ , defined as follows.

- ϵ is a key path of τ .
- Suppose ρ' is a key path of τ with $type(\tau.\rho') = \tau_1$.
 - For any τ_2 that is a unique sub-element of τ_1 , then then ρ' . τ_2 is a key path of τ . The notion of unique sub-elements is defined in Section 3.4.
 - If for some $l \in Att(\tau_1)$, either $\Sigma \models \tau_1.l \to \tau_1$, or $kind(\tau_1,l) = ID$ and $\Sigma \models \tau_1.id \to_{id} \tau_1$, then $\rho'.l$ is a key path of τ .

The complexity follows from Proposition 3.1.

Path inclusion constraints. Along the same lines, given a DTD^C $D = ((E, P, R, kind, r), \Sigma)$, we define a path inclusion constraint φ of D to be an expression of the form

$$\tau_1.\rho_1 \subseteq \tau_2.\rho_2$$
,

where $\tau_1, \tau_2 \in E$, $\rho_1 \in paths(\tau_1)$, and $\rho_2 \in paths(\tau_2)$. For any data tree G of D, $G \models \varphi$ means that in G,

$$ext(\tau_1.\rho_1) \subseteq ext(\tau_2.\rho_2).$$

Examples of path inclusion constraints are:

$$\begin{array}{cccc} book \cdot ref \cdot to & \subseteq & entry \\ book \cdot ref \cdot to \cdot title & \subseteq & entry \cdot title \end{array}$$

In particular, observe that when $\rho_2 = \epsilon$, path inclusion constraints have the form $\tau_1.\rho_1 \subseteq \tau_2$. Constraints of this form describe typing information.

Implication of path inclusion constraints by L_{id} constraints is also decidable.

Proposition 4.2: For any D, a DTD^C with a set of constraints Σ , and any path inclusion constraint φ , whether $\Sigma \models \varphi \ (\Sigma \models_f \varphi)$ is decidable in $O(|\varphi| (|\Sigma| + |P|))$ time, where P is the set of element type definitions in G, and $|\Sigma|$, |P|, $|\varphi|$ are the lengths of Σ , P, φ , respectively.

The idea of the proof is to show $\Sigma \models \tau_1.\rho_1 \subseteq \tau_2.\rho_2$ iff there exists $\varrho \in paths(\tau_1)$ such that (1) $type(\tau_1.\varrho) = \tau_2$, thus $\tau_1.\varrho \subseteq \tau_2$; and (2) $\rho_1 = \varrho.\rho_2$. Note that $\rho_1.\rho_2$ stands for the concatenation of ρ_1 and ρ_2 . From (1) and (2) immediately follows $\tau_1.\rho_1 \subseteq \tau_2.\rho_2$. This is because given $\tau_1.\varrho \subseteq \tau_2$, we have $\tau_1.\varrho.\rho_2 \subseteq \tau_2.\rho_2$. The complexity analysis also uses Proposition 3.1.

Path inverse constraints. A more general form of inverse constraints is defined as follows. A path inverse constraint

 φ of a $DTD^{C}~D=((E,\,P,\,R,\,kind,\,r),\,\Sigma)$ is an expression of the form

$$\tau_1.\rho_1 \rightleftharpoons \tau_2.\rho_2$$
,

where $\tau_1, \tau_2 \in E$, $\rho_1 \in paths(\tau_1)$ and $\rho_2 \in paths(\tau_2)$. It states an inverse relationship between paths ρ_1 and ρ_2 . That is, for any data tree G of D, if $G \models \varphi$ then in G,

$$\forall \, x \in ext(\tau_1) \, \forall \, y \in ext(\tau_2) \, \left(y \in nodes(x,\rho_1) \rightarrow \\ x \in nodes(y,\rho_2) \right) \\ \forall \, x \in ext(\tau_2) \, \forall \, y \in ext(\tau_1) \, \left(y \in nodes(x,\rho_2) \rightarrow \\ x \in nodes(y,\rho_1) \right)$$

As an example, let us consider element types course, student, and teacher. Suppose that student has an attribute taking, teacher has an attribute teaching and in addition, course has attributes taken_by and taught_by. Then φ given below is a path inverse constraint:

```
student . taking . taught\_by \rightleftharpoons teacher . teaching . taken\_by
```

Assume the following basic inverse constraints:

```
student.taking \rightleftharpoons course.taken\_by

teacher.teachinq \rightleftharpoons course.taught\_by
```

Then these imply the path inclusion constraint φ .

The complexity of implication of path inverse constraints by L_{id} constraints is given as follows.

Proposition 4.3: For any D, a DTD^C with a set of constraints Σ , and any path inverse constraint φ , whether $\Sigma \models \varphi \ (\Sigma \models_f \varphi)$ is decidable in $O(|\Sigma| |\varphi|)$ time, where $|\Sigma|$ and $|\varphi|$ are the lengths of Σ and φ , respectively.

This can be easily verified by using the following rule:

$$\frac{\tau_1.l_1 \rightleftharpoons \tau_2.l_2 \qquad \tau_2.l_2' \rightleftharpoons \tau_3.l_3}{\tau_1.l_1.l_2' \rightleftharpoons \tau_3.l_3.l_2}$$

5 Conclusions

We have proposed a formalization for XML DTDs that specifies both the syntactic structure and integrity constraints. Semantics for XML documents is captured with simple key, foreign key and inverse constraints. We have introduced several families of constraints useful either for native documents or for preserving the semantics of data originating in structured databases. In addition, these constraints improve the XML reference mechanism with typing and scoping. We have investigated the implication and finite implication problems for these basic XML constraints, and established a number of complexity and axiomatizability results. These results are not only useful for XML query optimization, but they also extend relational dependency theory, notably, on the interaction between (primary) keys and foreign keys. We have also studied path functional, inclusion and inverse constraints and their implication by basic XML con-

On the theoretical side, a number of questions are still open. First, it can be shown that (finite) implication of multi-attribute primary keys and foreign keys is in PSPACE. Can this be tested more efficiently? Second, we only investigated implication of path constraints by basic constraints. Implication of path constraints by path constraints has not been settled. On the practical side, we believe the approach

proposed here is promising. The basic constraints are simple and important enough to assume they could be specified by the XML designer and maintained by the system. An important application of XML is data integration [16]. In this context, important questions are how constraints propagate through integration programs, and how they can help in verifying their correctness?

Acknowledgements. We thank Peter Buneman, Richard Hull, Val Tannen, Scott Weinstein and Limsoon Wong for valuable comments and suggestions.

References

- S. Abiteboul, S. Cluet, T. Milo, P. Mogilevsky, J. Siméon, and S. Zohar. Tools for data translation and integration. *IEEE Data Engineering Bulletin*, 22(1):3– 8, 1999.
- [2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [3] S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitive. In Proceedings of ACM SIG-MOD Conference on Management of Data, volume 18, pages 159–173, Portland, Oregon, June 1989. ACM.
- [4] S. Abiteboul and V. Vianu. Regular path queries with constraints. In *Proceedings of ACM Symposium on Principles of Database Systems*, pages 122–133, Tucson, Arizona, May 1997.
- [5] J. Barwise. On moschovakis closure ordinals. *Journal of Symbolic Logic*, 42:292–296, 1977.
- [6] C. Beeri and T. Milo. Schemas for integration and translation of structured and semi-structured data. In Proceedings of International Conference on Database Theory (ICDT), Lecture Notes in Computer Science, Jerusalem, Israel, Jan. 1999.
- [7] P. V. Biron and A. Malhotra. XML schema part 2: Datatypes. W3C Working Draft, Sept. 1999. http://www.w3.org/TR/xmlschema-2/.
- [8] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.
- [9] A. Borgida. On the relative expressiveness of description logics and predicate logics. Artificial Intelligence, 82(1-2):353-367, 1996.
- [10] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language (XML) 1.0. W3C Recommendation, Feb. 1998. http://www.w3.org/TR/REC-xml/.
- [11] P. Buneman, W. Fan, and S. Weinstein. Path constraints on semistructured and structured data. In Proceedings of ACM Symposium on Principles of Database Systems, pages 129–138, Seattle, Washington, June 1998.
- [12] P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type constraints. In *Proceedings of ACM Symposium on Principles of Database Systems*, pages 56–67, Philadelphia, Pennsylvania, may 1999.

- [13] P. Buneman, W. Fan, and S. Weinstein. Query optimization for semistructured data using path constraints in a deterministic data model. In *Proceedings of International Workshop on Database Programming Languages*, 1999.
- [14] D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning on XML documents: a description logic approach. *Journal of Logic and Computation*, 9(3):295–318, June 1999.
- [15] R. G. Cattell. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.
- [16] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! In Proceedings of ACM SIGMOD Conference on Management of Data, pages 177–188, Seattle, Washington, June 1998.
- [17] S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi. Polynomial-time implication problems for unary inclusion dependencies. *Journal of the ACM*, 37(1):15-46, Jan. 1990.
- [18] A. Davidson, M. Fuchs, M. Hedin, M. Jain, J. Koistinen, C. Lloyd, M. Maloney, and K. Schwarzhof. Schema for object-oriented XML 2.0, July 1999. W3C Note.
- [19] A. Deutsch, L. Popa, and V. Tannen. Physical data independence, constraints, and optimization with universal plans. In *Proceedings of International Conference* on Very Large Databases (VLDB), pages 459–470, Edinburgh, Scotland, Sept. 1999.
- [20] W. Fan and J. Siméon. Integrity constraints for XML. Technical Report TR-2000-01, Department of Computer and Information Sciences, Temple University, Feb., 2000. http://www.cis.temple.edu/~fan/TR/00-1.ps.gz.
- [21] E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order logic. *Bulletin of Symbolic Logic*, 3(1):53–69, Mar. 1997.
- [22] C. S. Hara and S. B. Davidson. Reasoning about nested functional dependencies. In *Proceedings of ACM Sym*posium on *Principles of Database Systems*, pages 91– 100, Philadephia, Pennsylvania, May 1999.
- [23] M. Ito and G. E. Weddell. Implication problems for functional constraints on databases supporting complex objects. *Journal of Computer and System Sciences*, 50(1):165–187, 1995.
- [24] O. Lassila and R. R. Swick. Resource description framework (RDF) model and syntax specification. W3C Recommendation, Feb. 1999. http://www.w3.org/TR/REC-rdf-syntax/.
- [25] A. Layman, E. Jung, E. Maler, H. S. Thompson, J. Paoli, J. Tigue, N. H. Mikula, and S. De Rose. XMLdata. W3C Note, Jan. 1998. http://www.w3.org/TR/1998/NOTE-XML-data.
- [26] F. Neven. Extensions of attribute grammars for structured document queries. In Proceedings of International Workshop on Database Programming Languages, 1999.
- [27] J. D. Ullman. Database and Knowledge Base Systems. Computer Science Press, 1988.

[28] M. F. van Bommel and G. E. Weddell. Reasoning about equations and functional dependencies on complex objects. *IEEE Transactions on Data and Knowledge En*gineering, 6(3):455-469, 1994.