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Abstract

Integrity constraints are useful for semantic speci�cation,
query optimization and data integration. The ID/IDREF
mechanism provided by XML DTDs relies on a simple form
of constraint to describe references. Yet, this mechanism is
not su�cient to express semantic constraints, such as keys
or inverse relationships, or stronger, object-style references.
In this paper, we investigate integrity constraints for XML,
both for semantic purposes and to improve its current refer-
ence mechanism. We introduce a data model that captures
the semantics of DTDs as well as integrity constraints. Sev-
eral families of constraints are considered, including key, for-
eign key, inverse constraints and constraints specifying the
semantics of object identities. These constraints are useful
both for native XML documents and to preserve the seman-
tics of data originating in relational or object databases.
Complexity and axiomatization results are established for
the (�nite) implication problems associated with these con-
straints. These results also extend relational dependency
theory on the interaction between (primary) keys and for-
eign keys. In addition, we investigate implication of more
general constraints, such as functional, inclusion and inverse
constraints de�ned in terms of navigation paths.

1 Introduction

XML [10] is designed to simplify information exchange be-
tween Web applications. It relies on a concrete syntax for
annotated trees, which is very convenient to represent data
from any source, but provides only limited semantic infor-
mation. A number of recent proposals aim at recovering
semantics in XML, following various approaches: type sys-
tems [6, 7, 18, 25], description logics [14], metadata descrip-
tions [24], etc. As some of these proposals [7, 25] point out,
integrity constraints are important for specifying semantics.
In addition, they are useful for query optimization [19], up-
date anomaly prevention [2], and information preservation
in data integration [1, 16]. In relational databases, an im-
portant application of integrity constraints is to model ref-
erences, through keys and foreign keys.

The standard XML schema language (i.e. Document
Type De�nition or DTD) also supports a reference mecha-
nism. The so-called ID (IDREF) attributes provide a means
to uniquely identify (refer to) a given element in an XML
document. The way ID/IDREF attributes operate resem-
bles the key and foreign key mechanism used in relational
databases. Yet, it is neither su�cient to specify semantic
constraints such as keys or inverse relationships, nor power-
ful enough to model object-style references. In response to
these problems, this paper investigates the use of integrity
constraints in XML. More speci�cally, we make the following

contributions:

� We introduce a model for XML data with schema and
integrity constraints. We de�ne L, Lid and Lu, three
basic constraint languages that support both a refer-
ence mechanism and better semantics. Language Lu
is a very simple extension of the original ID/IDREF
mechanism, su�cient for native XML documents. Lid
and L can be used to capture semantic constraints
when data originates in object-oriented and relational
databases, respectively.

� We study implication and �nite implication problems
for these three languages. For each language, we pro-
vide complexity results and axiomatization when one
exists. The results for L extend relational dependency
theory. Notably, the implication and �nite implica-
tion problems for arbitrary keys and foreign keys are
shown to be undecidable, but they become decidable
when only primary keys are considered.

� We investigate implication of more general forms of
constraints, including functional, inclusion and inverse
constraints de�ned in terms of navigation paths, by
basic constraints of Lid. Such path constraints have
a variety of practical applications, ranging from query
optimization to veri�cation of the correctness of inte-
gration/transformation programs.

This work is motivated by the need for integrity con-
straints arising from practical XML applications. So before
we dive into a more formal presentation, we �rst illustrate
these various application contexts and the de�ciencies of the
current ID/IDREF mechanism.

The ID/IDREF mechanism, constraints and references

Let us consider the following XML document in its now
familiar syntax.

<?XML version = "1.0">
<bib>

<book>
<entry isbn="1-55860-622-X">

<title>Data on the Web: ...</title>
<publisher>Morgan Kaufmann</publisher>

</entry>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>
<section sid="1">

<title>Introduction</title>
<text>...</text>

<section sid="11">
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<title>Audience</title></section>...
<ref to="0-201-53771-0 1-55860-463-4"/>

</book>
<book>

<entry isbn="0-201-53771-0">
<title>Foundations of Databases</title>
<publisher>Addison Wesley</publisher>
</entry>
<author>Serge Abiteboul</author>
<author>Richard Hull</author>
<author>Victor Vianu</author>
...

</book>
</bib>

This document contains information about books. For
each book, it gives the isbn, title and publisher in an entry
element, then the list of authors, the book content and a set
of bibliographical references. This could correspond to the
following DTD:

<!ELEMENT book (entry, author*,
section*, ref)>

<!ELEMENT entry (title, publisher)>
<!ATTLIST entry

isbn ID #required>
<!ELEMENT section (title, (text|section)*)>
<!ATTLIST section

sid ID #required>
<!ELEMENT ref EMPTY>
<!ATTLIST ref

to IDREFS #implied>

In a DTD, each element has an element type and an at-
tribute type description. We omit the descriptions of the ele-
ments whose type is string (e.g., PCDATA in XML). The ID
annotation indicates that the corresponding attribute should
uniquely identify an element. This property must hold on
the whole document for all ID attributes. The IDREF(S) an-
notation indicates a reference, i.e., it should contain a (set
of) value(s) of the ID attribute(s) present in the document.

Observe that the ID/IDREF mechanism has similarities
to both the identity-based notion of reference from object-
oriented databases [3] and keys/foreign keys from relational
databases. Like object identi�ers, ID attributes uniquely
identify elements within the whole document. Because XML
relies on a textual format, the reference semantics is ob-
tained by an implicit constraint that must hold on attribute
values, in the spirit of keys and foreign keys. Yet, it captures
neither the complete semantics of keys nor that of object-
style references. For instance, isbn should be a key for
entry. Its representation as an ID attribute indeed makes
it unique, but across all the ID attributes in the document.
This is a much stronger assumption, preventing other ele-
ments, e.g., book elements from using the same isbn number
as a key. Worse still, the scope and type of an ID/IDREF at-
tribute are not clear. The to attribute, for instance, could
contain a reference to a section element. Obviously, we
would like to constrain such references to entry elements
only.

We can resolve these problems by changing slightly the
constraints on the attributes involved. More speci�cally,
we can (i) treat isbn (sid) attribute as a key for entry
(section) elements, (ii) add an inclusion constraint, corre-
sponding to a foreign key, asserting that ref.to is a subset
of entry.isbn. These can be expressed in our language Lu.

Capturing the semantics of legacy data

A large amount of XML data originates in legacy sources,
notably relational and object databases. In these databases,
keys, foreign keys and inverse relationships are common [2,
15]. These constraints convey a fundamental part of the
original information that we do not want to lose. Consider
for instance, the following object-oriented schema (in ODL
syntax [15]):

class Person
f attribute String name;
attribute String address;
relationship set<Dept> in dept

inverse Dept::has staff; g
class Dept

f attribute String dname;
attribute Person manager;
relationship set<Person> has staff

inverse Person::in dept; g

On top of the structure speci�ed by the schema, we have
the following: name and dname are keys for the Person and
Dept classes respectively, and there is an inverse relationship
between Person.in dept and Dept.has staff.

When exporting this object database to XML, the fol-
lowing DTD could be generated, trying to preserve most of
the original schema:

<!ELEMENT db (person*, dept*)>
<!ELEMENT person (name, address)
<!ATTLIST person

oid ID #required
in_dept IDREFS #implied>

<!ELEMENT dept (dname)>
<!ATTLIST dept

oid ID #required
manager IDREF #required
has_staff IDREFS #implied>

Here the original ID semantics is appropriate to capture
the notion of object identi�ers [3] (see the oid attribute).
However, references through IDREF are weaker: because
IDREF attributes are \untyped", we no longer know that
the person.in dept attribute should reference departments.
In addition, as in the previous example, keys are not pre-
cisely captured (here we cannot even use ID for name and
dname as XML only allows one single ID attribute). Last, we
have no way to express the inverse relationships. We want to
overcome these limitations while preserving the semantics of
the original notion of object identities. To do so, we can add
the following constraints to the original DTD's semantics:
(i) an inclusion constraint to specify that person.in dept
refers to departments only; (ii) more than one key for per-
sons and departments; (iii) an inverse constraint between
person.in dept and dept.has staff. These can be ex-
pressed in our language Lid.

Last, assume that the following DTD is translated from
a relational schema:

<!ELEMENT publishers (publisher*)>
<!ELEMENT publisher (pname,country,address)>
<!ELEMENT editors (editor*)>
<!ELEMENT editor (name,pname,country)>
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We would also like to capture the semantic constraints
from the relational database: (pname, country) is a key for
relation publishers, name is a key for relation editors, and
(pname, country) is a foreign key in editors referencing
publishers. To do so, we need to be able to express con-
straints on sub-elements (and not only attributes), as well
as the typical relational keys and foreign keys by means of
attributes. These are captured by our language L.

Implication problems for XML constraints and related work

There is a large body of work on integrity constraints in
the relational context [2, 27] that we can try to exploit.
An important remark is that ID and IDREF attributes are
unary. As a consequence, the work on (unary) inclusion
and functional dependencies by Cosmadakis, Kanellakis and
Vardi [17] is particularly relevant. However, because of the
semantics of ID attributes, results from [17] are not directly
applicable in the XML context. Another di�erence is due
to the more complex structure of XML documents, for in-
stance the presence of set-valued attributes (see the IDREFS
attribute in our �rst example). Our results, especially those
on Lid constraint implication, address these issues. As lan-
guage L is designed to capture semantic constraints from
relational databases, it �ts more directly into the relational
setting. Yet, to the best of our knowledge, implication prob-
lems for general/primary keys and foreign keys have never
been addressed before.

XML documents can have arbitrarily nested structures
(note that the section elements from the book DTD have a
recursive de�nition). It is therefore natural to consider both
(unrestricted) implication and �nite implication problems.
This also highlights the importance of path constraints in
this context. As an example, we would like to know that
isbn is not only a key for entry, but also a key for the outer
book elements. This never occurs in the relational setting.

Path constraints have been studied formally in [4, 11,
12, 13, 22, 23, 28]. The path constraint languages intro-
duced in [4, 11, 12, 13] specify inclusions among certain
sets of objects, and are studied for semistructured data and
XML. They are capable of expressing (unary) foreign key
constrains. Inverse constrains are also expressible in the
languages of [11, 12, 13]. However, these languages cannot
express key constraints. [22] studies extended functional de-
pendencies for nested relations. Another generalization of
functional dependencies, called path functional dependen-
cies, has been investigated for a restricted object-oriented
data model in [23, 28]. These generalizations of functional
dependencies are capable of expressing neither foreign keys
nor inverse constraints. Furthermore, they are studied in
the context of data constrained by type systems. As shown
in [12], the interaction between path constraints and type
constraints is not simple. More precisely, path constraint
implication has wildly di�erent complexities in the presence
and absence of type systems.

Finally, we address the connection between our XML
constraints and bounded variable logics, in particular, two-
variable �rst-order logic (FO2). FO2 is the fragment of
�rst-order logic consisting of all relational sentences with at
most two distinct variables. Recently, Gr�adel, Kolaitis and
Vardi have shown that the satis�ability and �nite satis�a-
bility problems for FO2 are NEXPTIME-complete [21]. It
should be mentioned that many constraints considered here
are not expressible in FO2, including foreign key constraints
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Figure 1: Structures distinguishable by key constraint

of L, inverse constraints of Lid and Lu, and (unary) key con-
straints of all three languages. These can be veri�ed by using
the 2-pebble Ehrenfeucht-Fra��ss�e (EF) style game [5]. As an
example, consider the structures G and G0 given in Figure 1.
Using 2-pebble EF game, one can show that G and G0 are
equivalent in FO2. However, they are distinguished by the
unary key constraint ' = �:l ! � , i.e.,

8xy (9 z (l(x; z) ^ l(y; z))! x = y):

This constraint asserts that for any � -elements x, y, if x
and y have the same l-attribute value, then they are equal.
Observe that G j= ' but G0 6j= '. This shows that ' is not
expressible in FO2.

As shown by Borgida [9], FO2 is equally expressive as
DL � ftrans; compose; at least; at mostg, i.e., description
logic omitting the transitive closure and composition con-
structors as well as counting quanti�ers. As an immediate
result, many XML constraints considered here are not ex-
pressible in DL � ftrans; compose; at least; at mostg. [9]
has also shown that description logic with the composition
constructor, i.e., DL�ftrans; at least; at mostg, has equiv-
alent expressive power as FO3, the fragment of �rst-order
logic with at most three distinct variables and with monadic
and binary relations. It is known that FO3 possesses un-
decidable satis�ability and �nite satis�ability problems [8].
In contrast, we shall show that most of the implication and
�nite implication problems associated with our constraint
languages are decidable. Therefore, results about DL are
not much of help for implication of our constraints.

Organization

The rest of the paper is organized as follows. Section 2
presents the XML data model with schema and constraints,
de�nes the constraint languages L, Lid and Lu, and show
how they capture the examples above. Section 3 investigates
implication, �nite implication and axiomatization problems
associated with these constraint languages. Section 4 studies
implication of path constraints by basic constraints of Lid.
Section 5 concludes the paper.

2 Capturing XML document semantics

In this section, we present a data model and a formaliza-
tion of DTDs [10]. The data model represents the content
of XML documents, and DTDs specify the structure and
semantics of the data. We formalize a DTD as a structural
speci�cation and a set of integrity constraints. We will use
various families of constraints to specify various extensions
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over DTD structures. The clear separation between struc-
tural and integrity constraints yields a robust framework. In
particular, most of our results on integrity constraints are
easily extensible to other XML type systems [7, 16, 6].

2.1 Documents

We begin with the data model for representing XML doc-
uments. In the following, we assume the existence of a set
E of element names, a set A of attribute names, and a set
S of string values. We assume, without loss of generality,
that all atomic values are of the same type, denoted by S.
We also assume an in�nite set V of vertices. Given a set X,
we use F (X) and P (X) to denote the set of all lists built
over elements of X and the power-set of X, respectively. We
represent XML documents as ordered annotated trees with
labels on the nodes.

De�nition 2.1: A data tree is denoted by (V, elem, att,
root), where

� V is a set of vertices, i.e., a subset of V;

� elem is a function mapping vertices to their labels and
children, i.e., from V to E � F (S [ V ), and de�ning a
tree, i.e., a vertex has at most one parent;

� att is a partial function from vertex and attribute name
pairs to a set of atomic values, i.e., from V �A to P (S);

� root is a distinguished element of V called the root of
the tree.

Intuitively, V is the set of (internal) vertices of the tree.
The function elem indicates for each node its label (an ele-
ment name) and its list of children (either string values or
sub-trees). The function att de�nes the attributes of each
node. In XML, the attributes of an element are unordered
and each contains a set of atomic values. We will use DTDs
to specify the structure and semantics of data trees. Fig-
ure 2 shows a data tree depicting our book document given
in Section 1. Note that the indications about the ID/IDREF
semantics of attributes assume the corresponding DTD is
available.

We will use the following notations. For any � 2 E, we
use ext(�) to denote the set of nodes labeled � in V . For
any x 2 V and l 2 A, we use x:l to indicate att(x; l), i.e.,
the value of the attribute l for x. We de�ne ext(� ):l to
be fx:l j x 2 ext(�)g. Furthermore, let X be a sequence of
attributes (l1; :::; ln). We use x[X] to denote (x:l1; :::; x:ln).

2.2 Document Type De�nitions

We use DTD with constraints to capture the semantics of
XML documents. We �rst describe the structural speci�ca-
tions, then introduce the constraint languages.

Document Structure

In the literature [6, 14, 26], DTDs are often modeled as Ex-
tended Context Free Grammars (ECFGs), with elements as
non-terminals, basic XML types as terminals and element
de�nitions (with regular expressions) as productions. While
ECFGs can specify the syntactic structure of elements, they

fail to describe attributes, notably the ID/IDREF mecha-
nism. Here we start from ECFGs [14] and extend them to
capture attributes.

De�nition 2.2: A DTD Structure is denoted by

S = (E;P;R; kind; r);

where:

� E is a �nite set of element types in E, ranged over by
� ;

� P is a function from element types to element type
de�nitions: P (�) = �; where � is a regular expression,
de�ned as follows:

� ::= S j e j � j � + � j � ; � j �
�

where S is the type of atomic values given above, e 2 E,
� denotes the empty element, \+" stands for union, \;"
for the concatenation, and \�" for the Kleene closure.

� R is a partial function over E � A to attribute type
de�nitions: R(�; l) = �, where � is an element name
in E, l is an attribute name in A and � is either S or
S�.

We use Att(�) to denote the set of attributes of � , i.e.,
fl 2 A j R(�; l) is de�nedg. An attribute l is called a
set-valued attribute of � if R(�; l) = S�, and a singled-
valued otherwise.

� kind is a partial function identifying the ID and IDREF
attributes, from E �A to fID; IDREFg.

We assume that for any � 2 E and l 2 A, if kind(�; l)
is de�ned then so is R(�; l). Moreover, there exists
at most one attribute lo such that kind(�; lo) = ID.
In addition, lo must be single-valued. We use �:id to
denote the ID attribute �:lo, when it exists.

� r 2 E is the element type of the root.

Document Constraints

Next, we introduce the three constraint languages that we
will use in the remainder of the paper.

Language L. The �rst language, L, will be used to capture
integrity constraints from relational databases. Therefore,
it de�nes the classical key and foreign key constraints [2].
For a DTD Structure, S = (E;P;R; kind; r), a constraint
of L has one of the following forms:

� Key constraint: � [X]! � , where � 2 E and X is a set
of single-valued attributes in Att(�). It asserts

8xy 2 ext(�) (
^

l2X

(x:l = y:l)! x = y)

i.e., X is a key for � .

� Foreign key constraint: � [X] � � 0[Y ], where �; � 0 2 E,
X;Y are sequences of single-valued attributes inAtt(�)
and Att(� 0), respectively, and X and Y have the same
length. In addition, Y is the key of � 0, i.e., � 0[Y ]! � 0.
It asserts that

8x 2 ext(�) 9 y 2 ext(� 0) (x[X] = y[Y ]);

i.e., X is a foreign key of � referring to � 0.
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Figure 2: Graph representation of an XML document

Language Lu. The purpose of language Lu is to provide
a minimal extension of DTDs that captures keys, references
and inverse constraints. In L, a key may be composed of sev-
eral attributes. In XML, references are always unary, i.e.,
via a single attribute. In addition, XML supports IDREFS
attributes, that is, attributes that are set-valued and have
an IDREF kind. To be as close to the original XML as pos-
sible, we consider L constraints in which the sequences X, Y
consist of a single attribute. We refer to such constraints as
unary constraints, and write x[l] as x:l. Moreover, we study
set-valued foreign keys and inverse constraints. Based on
the considerations about the book document from the in-
troduction, we then assume that the ID value of an element
is unique among elements of the same type, rather than
within the entire document.

Therefore, we de�ne Lu to contain unary constraints of
L as well as set-valued foreign key constraints and inverse
constraints. More speci�cally, a constraint of Lu has one of
the following forms:

� Unary key constraint of L: �:l ! � .

� Unary foreign key constraint of L: �:l � � 0:l0.

� Set-valued foreign key constraint: �:l �S � 0:l0. Here
�; � 0 2 E, l is a set-valued attribute of � and l0 is a
single-valued attribute of � 0 such that � 0:l0 ! � 0. It
asserts

8x 2 ext(�) (x:l � ext(� 0):l0):

� Inverse constraint: �(lk):l *) � 0(l0k):l
0. Here we have

�; � 0 2 E, l; l0 are set-valued attributes of �; � 0, respec-
tively, and lk; l

0
k are single-valued attributes of �; � 0

such that �:lk ! � and � 0:l0k ! � 0. It asserts

8x 2 ext(�)8 y 2 ext(� 0) (x:lk 2 y:l0 ! y:l0k 2 x:l);

8x 2 ext(� 0) 8 y 2 ext(�) (x:l0k 2 y:l! y:lk 2 x:l
0):

It should be noted we need to specify explicitly which
keys are involved in an inverse constraint.

Constraints of Lu provide a simple reference mechanism
that can be viewed as an extension of the one used in rela-
tional databases to the XML context.

It should be noted that the kind function of the DTD
Structure is not used when de�ning L and Lu constraints.

More speci�cally, in L and Lu, keys are not necessarily ID at-
tributes and likewise, foreign keys do not have to be IDREF
attributes.

Language Lid. Finally, we want a language that preserves
the semantic of identi�ers from object databases. To do
so, we keep the original semantics of ID attributes, whose
value is unique within the whole document. Yet, we want
to extend it with key and inverse constraints. To capture
these, we de�ne the language Lid that consists of unary key
constraints of L and the following:

� Unary key constraint of L: �:l ! � .

� ID constraint: �:id !id � , where � 2 E and there is
l 2 Att(�) such that kind(�; l) = ID. It asserts

8x 2 ext(� ) 9 s 2 S (x:id = s ^
8 y (y:id = s! x = y)).

� Foreign key constraint: �:l � � 0:id. Here we have
�; � 0 2 E, l 2 A, kind(�; l) = IDREF , l is a single-
valued attribute of � , and moreover, � 0:id !id � 0. It
asserts

8x 2 ext(� ) (x:l 2 ext(� 0):id):

� Set-valued foreign key constraint: �:l �S � 0:id. Here
�; � 0 2 E, l 2 A, kind(�; l) = IDREF , and l is a
set-valued attribute of � . Moreover, � 0:id !id � 0. It
asserts

8x 2 ext(�) (x:l � ext(� 0):id):

� Inverse constraint: �:l *) � 0:l0. Here we have �; � 0 2 E,
l; l0 2 A, kind(�; l) = kind(� 0; l0) = IDREF , l and l0

are both set-valued attributes, and moreover, � and � 0

have ID attributes, i.e., �:id !id � and � 0:id !id � 0.
It asserts that there is an inverse relationship between
l and l0. Formally, that is:

8x 2 ext(�)8 y 2 ext(� 0) (x:id 2 y:l
0 ! y:id 2 x:l)

8x 2 ext(� 0)8 y 2 ext(�) (x:id 2 y:l! y:id 2 x:l
0)

Language Lid improves the original XML reference mech-
anism by imposing typing and scoping constraints on the
attributes. It also supports inverse constraints and unary
key constraints.
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We will refer to the constraints of these languages as the
basic XML constraints.

Finally, we de�ne DTDs with constraints as follow.

De�nition 2.3: A Document Type De�nition with con-
straints (or DTDC) is denoted by D = (S;�), where:

� S is a DTD Structure,

� � is a set of basic XML constraints expressed in one
of the constraint languages de�ned above.

2.3 Valid documents

Given a DTDC , we can de�ne the notion of valid documents,
i.e., documents that conform to it.

De�nition 2.4: Let D = ((E;P;R; kind; r);�) be a DTDC

and G = (V; elem; att; root) be a data tree. We say that G
is valid with respect to D if and only if there is a mapping
� : V [ S ! E [ fSg, such that:

� �(root) = r,

� for any s in S, �(s) = S,

� for any v 2 V such that elem(v) = (e; [v1; : : : ; vn]),
with P (e) = �, then e = �(v) and [�(v1); : : : ; �(vn)]
belongs to the regular language de�ned by �,

� for any v 2 V and l 2 A, att(v; l) is de�ned if and only
if R(�(v); l) is de�ned. Moreover, if l is a single-valued
attribute of � , then att(v; l) must be a singleton set,

� G j= �.

We borrow the standard notion of models from logic. Let
' be a constraint and G a data tree. We use G j= ' to de-
note that G satis�es ', i.e., G is a model of '. Let � be a
set of constraints. We use G j= � to indicate that G satis�es
all the constraints in �. Note that the function kind does
not appear in the de�nition of validity but is implicitly used
in constraint satisfaction (only for language Lid though).
Indeed, by requiring G j= �, we can view attributes as ref-
erences to other elements.

2.4 Examples

We now reexamine the examples given in Section 1 and show
how their semantics can be captured by a DTDC , using the
di�erent constraint languages Lid, Lu and L.

We start with the book document. To specify its struc-
ture, we de�ne D = ((E;P;R; kind; r);�), a DTDC with
constraints in Lu, as follows.

E = f book; entry ; section ; ref g
P (book) = (entry, author�, section�, ref)
P (entry) = (title; publisher)
P (section) = (text+ section)�

P (ref) = �
R(entry, isbn) = S
R(section, sid) = S
R(ref, to) = S�

r = book
� = f entry.isbn ! entry,

section.sid ! section,
ref.to �S entry.isbn g

Note that we can keep the function kind empty as we do
not use the original ID/IDREF semantics. Note also the
use of a set-valued foreign key to capture the semantics of
the set-valued ref attribute.

We next give a DTDC with constraints in Lid to describe
the structure of our person/dept object-oriented database:
Do = ((Eo; Po; Ro; kindo; ro);�o), with:

Eo = f db; person ; dept ; name ; address ; dname g
Po(db) = (person�; dept�)
Po(person) = (name; address)
Po(dept) = dname
Ro(person, oid) = S
Ro(person, in dept) = S�

Ro(dept, oid) = S
Ro(dept, manager) = S
Ro(dept, has sta�) = S�

kindo(person, oid) = ID
kindo(person, in dept) = IDREF
kindo(dept, oid) = ID
kindo(dept, manager) = IDREF
kindo(dept, has sta�) = IDREF
ro = db
�o = f person.oid !id person,

dept.oid !id dept,
person.name ! person,
dept.dname ! dept,
person.in dept �S dept.oid,
dept.manager � person.oid,
dept.has sta� �S person.oid
dept.has sta� *) person.in dept g

In Section 3.4, we will show how to extend Lid to specify
constraints in terms of sub-elements. Thus we do not have
to rede�ne name, dname as attributes. Note here we specify
key constraints in addition to object identities.

Finally, consider the publisher DTD given in Section 1.
We use the following constraints in language L to specify
that pname, country are a key of publisher and a foreign
key of editor referring to publisher.

publisher[pname; country] ! publisher
editor[pname; country] � publisher[pname; country]

3 Implication of basic XML constraints

In this section, we investigate the question of logical implica-
tion in connection with basic XML constraints: given that
certain constraints are known to hold, does it follow that
some other constraint necessarily holds? We examine the
question for Lid, Lu and L de�ned in the last section. For
each of these constraint languages, we establish complexity
results for its implication and �nite implication problems.
We also provide axiomatization if one exists. These results
are useful for, among others, studying XML semantics and
query optimization. Some of these results are also applicable
to relational databases. At the end of the section, we extend
our constraint languages to incorporate sub-elements.

We �rst give a formal description of the implication prob-
lems for XML constraints. Let C be either Lid, Lu or L, and
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�[' is a �nite subset of C. Let D be a DTDC , as described
in De�nition 2.3, such that � is the set of constraints in D.
We use � j= ' (resp. � j=f ') to denote that for any (resp.
�nite) data tree G of D, if G j= � then G j= '.

The (�nite) implication problem for C is to determine,
for any �nite subset � [ ' of C, whether for any DTDC D
with the set � of constraints, � j= ' (� j=f ').

3.1 Implication of Lid constraints

We �rst study the constraint language Lid. In Lid, an ID
constraint asserts that an ID attribute value uniquely iden-
ti�es an element within the entire document. An element
has at most one ID, and is referred to by means of its ID
attribute. As mentioned earlier, this reference mechanism is
similar to the one used in object-oriented databases.

A �nite axiomatization Iid for Lid is given below:

� ID-FK: �:id!id �
�:id � �:id

� FK-ID: �:l � � 0:id
� 0:id!id �

0

� SFK-ID: �:l �S � 0:id
� 0:id!id �

0

� Inv-SFK-ID:
�:l *) � 0:l0

�:l �S � 0:id � 0:l0 �S �:id

It is easy to verify the following.

Proposition 3.1: (1) Iid is sound and complete for both
implication and �nite implication of Lid. (2) The implica-
tion and �nite implication problems for Lid are decidable in
linear time.

3.2 Implication of Lu constraints

We next consider the constraint language Lu. In Lu, a key
constraint states that a key is unique among the elements
of the same type, rather than within the whole document.
An element may have more than one key, and is referred to
by means of any one of its keys.

We present a �nite axiomatization Iu for implication of
Lu constraints as follows.

� UK-FK: �:l ! �
�:l � �:l

� UFK-K: �:l � � 0:l0

� 0:l0 ! � 0

� SFK-K: �:l �S � 0:l0

� 0:l0 ! � 0

� UFK-trans: �1:l1 � �2:l2 �2:l2 � �3:l3
�1:l1 � �3:l3

� USFK-trans: �1:l1 �S �2:l2 �2:l2 � �3:l3
�1:l1 �S �3:l3

� Inv-SFK: �(lk):l *) � 0(l0k):l
0 �:lk ! � � 0:l0k ! � 0

�:l �S � 0:l0k � 0:l0 �S �:lk

Observe that we do not have the rule: if �1:l1 � �2:l2 and
�2:l2 �S �3:l3 then �1:l1 �S �3:l3. This is because key at-
tributes cannot be set-valued.

Cosmadakis, Kanellakis and Vardi have shown [17] that
in relational databases, implication and �nite implication
of unary inclusion and functional dependencies are di�erent
problems. In other words, implication of these dependen-
cies does not have the �nite model property. In addition,
for any �xed integer k, there is no k-ary axiomatization for
�nite implication. Instead, there is a cycle rule for each odd
positive integer. This is also the case for Lu. More specif-
ically, for �nite implication of Lu, we also have cycle rules:
for each positive integer k, there is a cycle rule Ck:

�1:l1 ! �1 �2:l2 � �1:l
0
1 ::: �k:lk ! �k �1:l1 � �k:l

0
k

�1:l
0
1 ! �1 �1:l

0
1 � �2:l2 ::: �k:l

0
k ! �k �k:l

0
k � �1:l1

Let Ifu consist of Iu rules and Ck for each positive integer
k. We can verify the following.

Theorem 3.2: (1) Iu is sound and complete for implication

of Lu. (2) I
f
u is sound and complete for �nite implication of

Lu.

The idea of the proof is borrowed from the proof of the
result of [17] mentioned above, with modi�cations to deal
with set-valued foreign key and inverse constraints.

Using Iu and Ifu , we can develop a linear-time algorithm
for testing implication of Lu, and a linear-time algorithm
for testing �nite implication of Lu.

Corollary 3.3: The implication and �nite implication prob-
lems for Lu are both decidable in linear time, but these
problems do not coincide.

To be even closer to the original XML semantics for ID
attributes, we consider a primary key restriction. This re-
striction requires that for any element type � , there is at
most one attribute l such that l is a key of � , i.e., �:l ! � .
Elements of � can only be referred to by using their l at-
tribute. As a result, the cycle rule does not apply here. In
addition, we cannot have both �1:l1 � �:l and �2:l2 � �:l0 if
l 6= l0.

Interestingly, the primary key restriction simpli�es the
analysis of Lu constraint implication. Indeed, the implica-
tion and �nite implication problems for Lu coincide in this
setting, which is a departure from [17].

Theorem 3.4: Under the primary key restriction, Iu is
sound and complete for both implication and �nite implica-
tion of Lu.

It is easy to verify that a similar result also holds for
relational databases.

Corollary 3.5: In relational databases, the implication and
�nite implication problems for primary unary key and for-
eign key constraints coincide and are decidable in linear
time.

3.3 Implication of L constraints

Next, we investigate constraint language L. In L, one can
express multi-attribute keys and foreign keys that are com-
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mon in relational databases. As observed by [7], these con-
straints are also of practical interest for native XML.

The analysis of L constraint implication, however, is not
a trivial problem.

Theorem 3.6: The implication and �nite implication prob-
lems for L are undecidable.

This result also holds for relational databases.

Corollary 3.7: In relational databases, the implication and
�nite implication problems for keys and foreign keys are un-
decidable.

This can be proved by reduction from the implication
and �nite implication problems for inclusion and functional
dependencies, which are well-known undecidable problems
(see, e.g., [2] for a corresponding proof).

The undecidability result suggests that we examine L
constraint implication under the primary key restriction.
That is, we assume that for any element type � 2 E, there
is at most one subset X of single-valued attributes in Att(�)
such that � [X]! � , and moreover, for any proper subset Y
of X, � [Y ] 6! � . When the primary key restriction is placed,
we refer to the constraints as primary key and foreign key
constraints.

The primary key restriction simpli�es reasoning about
L constraints. Indeed, under this restriction, implication
and �nite implication of L constraints become axiomatiz-
able. More speci�cally, we present an axiomatization Ip as
follows:

� PK-FK: � [X]! �
� [X] � � [X]

� PFK-K: � [X] � � 0[Y ]
� 0[Y ]! � 0

� PFK-perm: for each sequence i1; i2; :::; in of distinct
integers in [1; :::; n],

� [l1; l2; :::; ln] � � 0[l01; l
0
2; :::; l

0
n]

� [li1 ; li2 ; :::; lin ] � � 0[l0i1 ; l
0
i2
; :::; l0in ]

� PFK-trans: �1[X] � �2[Y ] �2[Y ] � �3[Z]
�1[X] � �3[Z]

Theorem 3.8: Under the primary key restriction, Ip is
sound and complete for both implication and �nite implica-
tion of L constraints.

Observe that under the primary key restriction, the im-
plication and �nite implication problems for L coincide.

To prove the completeness of Ip, it su�ces to construct
a data tree G such that G j= � and moreover, if � 6`Ip ',
then G 6j= '. The construction of G takes advantage of
the primary key restriction and uses a simple algorithm to
populate ext(�) for each element type � . The interested
reader should see [20] for a detailed proof.

This result is also applicable to relational databases.

Corollary 3.9: In relational databases, the implication and
�nite implication problems for primary keys and foreign keys
coincide and are decidable.

To our knowledge, no previous work has considered the
interaction between (primary) keys and foreign keys in re-

lational databases and the results established here extend
relational dependency theory.

3.4 Sub-elements as keys and foreign keys

In the XML standard [10], sub-elements are not allowed to
participate in the reference mechanism. To be consistent
with this approach, we have so far used only attributes in
our constraints. A natural question here is whether sub-
elements can also be used as keys and foreign keys. As
an example, let us consider the element type de�nition of
person given in Section 1:

<!ELEMENT person (name, address)>

It is perfectly reasonable to assume that name is a key for
person. This was easily captured in our corresponding DTD
speci�cation (see Do in Section 2.4), by including

person:name! person

in the constraint set (�o). This suggests that we extend the
de�nition of key constraints in Lid. Let � be speci�ed by an
element type de�nition P (�) = � and S be a sub-element of
� . We may specify constraint of the form

�:S ! �

if S is a unique sub-element of � , i.e., for any w 2 L(�), S
occurs exactly once in w, where L(�) is the regular language
de�ned by �. This is a syntactic restriction that can be
checked by examining the DTD. It is easy to verify that the
results established in Section 3.1 still hold for this extension.

Along the same lines, we extend the de�nitions of key
and foreign key constraints in Lu and L to incorporate sub-
elements. It can be veri�ed that the results of Sections 3.2
and 3.3 also apply to the corresponding extensions. In the
rest of the paper, we will allow key constraints to be speci�ed
in terms of sub-elements.

4 Implication of path constraints

Navigation paths are commonly used in XML query lan-
guages. Constraints de�ned in terms of paths are useful for,
among others, query optimization. Let us refer to such con-
straints as path constraints. In this section, we study impli-
cation of certain path constraints by basic XML constraints
given in a DTDC . More speci�cally, we examine three forms
of path constraints, referred to as path functional, inclusion
and inverse constraints. To do this, we �rst describe the
notion of paths. Then we de�ne path constraints and inves-
tigate their implication by basic XML constraints. In this
section we assume that basic XML constraints are expressed
in Lid.

4.1 Paths

A path is a sequence of node labels. More speci�cally, let D
be a DTDC ((E; P; R; kind; r); �). In a data tree G of D,
a path is a sequence of symbols in E [A that are labels of
a sequence of nodes. For example, paths in Figure 2 include
book:entry, book:author, book:ref:to:author. Observe that
we treat attribute to as a references from a ref element to
an entry element.

To be precise, we give a formal de�nition of paths. For
any element type � 2 E, we de�ne the set of paths of � ,
denoted by paths(� ), and for any � 2 paths(�), we de�ne
the type of �, denoted by type(�:�), as follows.
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� � 2 paths(�) and type(�) = � .

� Assume � 2 paths(�) with type(�:�) = �1.

{ For any l 2 Att(�), �:l is in paths(�). If there
exists �2 2 E such that either � j= �1:l � �2:id or
� j= �1:l �S �2:id, then type(�:�:l) = �2. Other-
wise type(�:�:l) = S.

{ Suppose that the element type de�nition of �1 is
P (�1) = �. For any �2 2 E [ fSg that occurs in
�, �:�2 is in paths(�) and type(�:�:�2) = �2.

Here Att(�) is the set of attributes of � as de�ned in De�ni-
tion 2.2. By the de�nition of Lid, one can easily verify that
for any � 2 E and � 2 paths(�), there is a unique � 0 such
that type(�:�) = � 0. That is, type(�:�) is well-de�ned.

For any data tree G of D, any x 2 ext(�) in G and
� 2 paths(�), we de�ne the set of vertices reachable from x
via �, denoted by nodes(x:�), as follows.

� If � = �, then nodes(x:�) = fxg.

� If � = %:�1 and �1 2 E, then for any y 2 nodes(x:%),
children of y labeled with �1 are in nodes(x:�).

� For � = %:l and l 2 A, if type(�:%) = S, then for
any y 2 nodes(x:%) and z 2 y:l, z is in nodes(x:�).
Otherwise we have type(�:%) = �1 and � j= �1:l � �2:id
(resp. � j= �1:l �S �2:id) for some �2 2 E. For any
y 2 nodes(x:%) and any vertex z labeled �2 such that
z:id = y:l (resp. z:id 2 y:l), z is in nodes(x:�).

We use ext(�:�) to denote the set of vertices reachable
from � elements by following �, i.e,

ext(�:�) =
[

x2ext(�)

nodes(x:�):

4.2 Path constraints

Next, we de�ne path constraints and investigate their im-
plication by Lid constraints.

Path functional constraints. Let D be a DTDC as
described in De�nition 2.3: ((E; P; R; kind; r);�). A path
functional constraint ' of D is an expression of the form

�:�! �:%;

where � 2 E and �; % 2 paths(�). For any data tree G of D,
we use G j= ' to denote that in G,

8x; y 2 ext(�) (nodes(x:�) = nodes(y:�)!
nodes(x:%) = nodes(y:%))

As an example, let us consider the book document given
in Section 1. The constraint ' below is an example of path
functional constraints of the book DTDC .

' = book : entry : isbn! book : author:

Constraint ' states that the isbn of the entry of a book
determines the authors of the book.

Suppose that isbn is a key of entry. That is, the set
of basic XML constraints, �, in the book DTDC given in
Section 2.4 includes:

entry : isbn ! entry

Given that � holds, one may ask whether ' also holds. In
general, given D, a DTDC with a set � of Lid constraints,
we want to know whether a path functional constraint ' is
implied by �. That is, whether for any data tree G of D, if
G j= � then G j= '.

About implication of path functional constraints by Lid
constraints we have the following result.

Proposition 4.1: For any D, a DTDC with a set of con-
straints �, and any path functional constraint ', whether
� j= ' (� j=f ') is decidable in O(j'j (j�j + jP j)) time,
where P is the set of element type de�nitions in G, and j�j,
jP j, j'j are the lengths of �, P , ', respectively.

To prove Proposition 4.1, it su�ces to show � j= �:� !
�:% i� � is a key path of � , de�ned as follows.

� � is a key path of � .

� Suppose �0 is a key path of � with type(�:�0) = �1.

{ For any �2 that is a unique sub-element of �1, then
then �0:�2 is a key path of � . The notion of unique
sub-elements is de�ned in Section 3.4.

{ If for some l 2 Att(�1), either � j= �1:l ! �1, or
kind(�1; l) = ID and � j= �1:id !id �1, then �0:l
is a key path of � .

The complexity follows from Proposition 3.1.

Path inclusion constraints. Along the same lines, given
a DTDC D = ((E; P; R; kind; r); �), we de�ne a path in-
clusion constraint ' of D to be an expression of the form

�1:�1 � �2:�2;

where �1; �2 2 E, �1 2 paths(�1), and �2 2 paths(�2). For
any data tree G of D, G j= ' means that in G,

ext(�1:�1) � ext(�2:�2):

Examples of path inclusion constraints are:

book : ref : to � entry

book : ref : to : title � entry : title

In particular, observe that when �2 = �, path inclusion
constraints have the form �1:�1 � �2. Constraints of this
form describe typing information.

Implication of path inclusion constraints by Lid con-
straints is also decidable.

Proposition 4.2: For any D, a DTDC with a set of con-
straints �, and any path inclusion constraint ', whether
� j= ' (� j=f ') is decidable in O(j'j (j�j + jP j)) time,
where P is the set of element type de�nitions in G, and j�j,
jP j, j'j are the lengths of �, P , ', respectively.

The idea of the proof is to show � j= �1:�1 � �2:�2 i�
there exists % 2 paths(�1) such that (1) type(�1:%) = �2, thus
�1:% � �2; and (2) �1 = %:�2. Note that �1:�2 stands for the
concatenation of �1 and �2. From (1) and (2) immediately
follows �1:�1 � �2:�2. This is because given �1:% � �2, we
have �1:%:�2 � �2:�2. The complexity analysis also uses
Proposition 3.1.

Path inverse constraints. A more general form of inverse
constraints is de�ned as follows. A path inverse constraint
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' of a DTDC D = ((E; P; R; kind; r); �) is an expression
of the form

�1:�1 *) �2:�2;

where �1; �2 2 E, �1 2 paths(�1) and �2 2 paths(�2). It
states an inverse relationship between paths �1 and �2. That
is, for any data tree G of D, if G j= ' then in G,

8x 2 ext(�1)8 y 2 ext(�2) (y 2 nodes(x:�1)!
x 2 nodes(y:�2))

8x 2 ext(�2)8 y 2 ext(�1) (y 2 nodes(x:�2)!
x 2 nodes(y:�1))

As an example, let us consider element types course,
student, and teacher. Suppose that student has an at-
tribute taking, teacher has an attribute teaching and in
addition, course has attributes taken by and taught by.
Then ' given below is a path inverse constraint:

student : taking : taught by *)
teacher : teaching : taken by

Assume the following basic inverse constraints:

student : taking *) course : taken by
teacher : teaching *) course : taught by

Then these imply the path inclusion constraint '.

The complexity of implication of path inverse constraints
by Lid constraints is given as follows.

Proposition 4.3: For any D, a DTDC with a set of con-
straints �, and any path inverse constraint ', whether � j=
' (� j=f ') is decidable in O(j�j j'j) time, where j�j and
j'j are the lengths of � and ', respectively.

This can be easily veri�ed by using the following rule:

�1:l1 *) �2:l2 �2:l
0
2
*) �3:l3

�1:l1:l
0
2
*) �3:l3:l2

5 Conclusions

We have proposed a formalization for XML DTDs that spec-
i�es both the syntactic structure and integrity constraints.
Semantics for XML documents is captured with simple key,
foreign key and inverse constraints. We have introduced
several families of constraints useful either for native doc-
uments or for preserving the semantics of data originating
in structured databases. In addition, these constraints im-
prove the XML reference mechanism with typing and scop-
ing. We have investigated the implication and �nite impli-
cation problems for these basic XML constraints, and estab-
lished a number of complexity and axiomatizability results.
These results are not only useful for XML query optimiza-
tion, but they also extend relational dependency theory, no-
tably, on the interaction between (primary) keys and foreign
keys. We have also studied path functional, inclusion and
inverse constraints and their implication by basic XML con-
straints.

On the theoretical side, a number of questions are still
open. First, it can be shown that (�nite) implication of
multi-attribute primary keys and foreign keys is in PSPACE.
Can this be tested more e�ciently? Second, we only inves-
tigated implication of path constraints by basic constraints.
Implication of path constraints by path constraints has not
been settled. On the practical side, we believe the approach

proposed here is promising. The basic constraints are sim-
ple and important enough to assume they could be speci�ed
by the XML designer and maintained by the system. An
important application of XML is data integration [16]. In
this context, important questions are how constraints prop-
agate through integration programs, and how they can help
in verifying their correctness ?
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