# Pseudo-Marginal slice sampling

Iain Murray, and Matthew M. Graham.

Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limited. We describe a general way to clamp and update the random numbers used in a pseudo-marginal method’s unbiased estimator. In this framework we can use slice sampling and other adaptive methods. We obtain more robust Markov chains, which often mix more quickly.

Appeared in *The Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics (AISTATS)*, *JMLR
W&CP* 51:911–919, 2016.
[PDF, DjVu, GoogleViewer, arXiv, BibTeX]

Matt made a nice poster.

**Code:**

- A simple python module — probably the easiest way to quickly combine pseudo-marginal slice sampling with other code. If random-number generation is a significant cost, you may want a faster, more custom implementation.
- Matt Graham’s broader python code and GP demonstrations
- For completeness: Toy and Ising experiments code (Matlab and C). Less recommended!

**See also:** This paper uses Elliptical
Slice Sampling. Pseudo-marginal slice sampling could be used in MCMC-ABC, however you
might also want to check out an
ABC alternative instead. If you're interested in work in this space, you
should also check out Matt and
Amos's work on
constrained HMC applied to some
ABC-like problems.