next up previous
Next: Enhanced thresholding Up: Segmentation Previous: Thresholding

Limitations of thresholding

 

The major drawback to threshold-based approaches is that they often lack the sensitivity and specificity needed for accurate classification. Sensitivity is defined as the true positive rate (TPR) for a function or a test that must detect the presence or absence of some intrinsic property (for example, tissue type) [74]. Hence, the purpose of the test is to determine, as accurately as possible, the presence or absence of this intrinsic property. Formally, the sensitivity of a binary test is defined as follows:

  equation180

where True+ is defined as the number of samples that have the intrinsic property and were categorized by the test as positive, and Intrinsic+ is defined as the total number of elements that have the intrinsic property (regardless of the outcome of the test).

In the previous example, the simple threshold rule for classifying bone will read the intensity values of each data element and categorize it as true if the value is above the threshold tex2html_wrap_inline3822 and false if it is not above the threshold. Hence, this test tries to determine an intrinsic property of an image pixel (i.e., bony = true or bony = false). In Figure gif, the area under the Bone curve and to the right of the Bone Threshold line is classified as T+ because this test will correctly categorize such elements as being bone. The area under the Bone curve and to the left of the Bone Threshold line is classified as F- because this test will incorrectly classify such elements as not being bone. In this example, the sensitivity is a measure of how well this test can categorize as bone those tissues that are truly bone.

On the other hand, specificity is defined as the complement of the false positive rate (FPR):

  equation201

where False- is defined as the total number of samples that do not have the intrinsic value but were categorized incorrectly as true, and Intrinsic- is defined as the total number of elements that do not have the intrinsic property [74].

In Figure gif, the area under the Muscle curve that lies to the right of the Bone Threshold line is classified as F+ because this test will incorrectly categorize such elements as being bone. Conversely, the area under the Bone curve that lies to the left of the Bone Threshold line is classified as F- because this test will correctly categorize such elements as not being bone. The specificity of this test is a measure of how well this test will reject from the bone category those elements that truly are not bone. Because their denominators are different, the sensitivity and specificity measures are not complements of one another. In fact, they measure two distinct aspects of any binary test: the ability to correctly reject false properties and the ability to correctly accept true properties.

It is important to realize that the definitions for sensitivity and specificity are valid for any test that performs binary categorization. No matter how sophisticated a test may be, it is still valid to ask what its sensitivity and specificity are.

As a rule, increasing the sensitivity of a binary test will reduce the specificity of the test, and vice versa. For example, by increasing the Bone Threshold in Figure gif, we can increase the specificity of the test because there will be fewer false positives. As a result, this will decrease the sensitivity because there will be fewer true positives. By plotting specificity versus sensitivity for a given test, we can construct what is known as a Receiver Operator Characteristic (ROC) Curve [74]. The ROC curve is a graphical representation of the trade-off between specificity and sensitivity for a given test (see Figure gif). We can see by examining Figure gif that increasing the sensitivity will cause the specificity to decrease (more false positives).

   figure224
Figure: A Receiver Operator Characteristic (ROC) curve for the simple bone classification test constructed by varying the bone discriminating threshold. Points near the top right region of the curve correspond to lower bone threshold values, whereas points near the bottom left region of the curve correspond to higher bone threshold values. Note that the vertical axis represents (1 - Specificity), which is also known as the false positive rate (fpr).

In addition to depicting the trade-off between specificity and sensitivity for a given test, the ROC curve is also useful for comparing the performance of different tests on the same categorization tasks. For instance, suppose we had three tests (test 1, 2, and 3) that used three different techniques for categorizing bone. By overlaying the ROC curves for each of the tests on the same graph, we can visually determine which test performs better under various conditions. For example, in Figure gif, the test depicted by curve tex2html_wrap_inline3828 lies above and to the left of curve tex2html_wrap_inline3830 . Hence, we conclude that test 3 is better than test 1 because for any given value of sensitivity, test 3 has a lower false positive rate (i.e., higher specificity). In practice, test 3 may be undesirable for reasons other than its power of discrimination. For example, test 1 may be a low-cost screening test for tuberculosis that will be given to a large population, whereas test 3 may be a more expensive chest X-ray exam. For a screening test, it is generally better to trade specificity for increased sensitivity so that fewer cases go undetected. The comparisons between test 1 and test 2 are less clear. Although test 1 is better than test 2 for high values of specificity, test 2 is better than test 1 for high values of sensitivity. In the absence of any other considerations, test 2 would be preferred in those situations where high sensitivity is preferred (for example, screening tests), whereas test 1 would be preferred in those situations where high specificity is preferred (for example, for ruling out a diagnosis for a risky surgical procedure).

   figure230
Figure: A family of ROC curves for a hypothetical set of classifiers. Test 1 (represented by tex2html_wrap_inline3828 ) is a better classifier than tests 2 and 3 because for all values of sensitivity, test 1 has a lower false positive rate. Test 2 is better than test 3 only at high values of sensitivity.


next up previous
Next: Enhanced thresholding Up: Segmentation Previous: Thresholding

Ramani Pichumani
Mon Jul 7 10:34:23 PDT 1997