next up previous
Next: Numerical Approximation Up: Minimisation Previous: Minimisation

Euler-Lagrange Equations

Since $ E(u,v)$ is highly nonlinear, the minimisation is not trivial. For better readability we define the following abbreviations, where the use of $ z$ instead of $ t$ emphasises that the expression is not a temporal derivative but a difference that is sought to be minimised.

\begin{displaymath}\begin{array}{lclp{2cm}l}
 I_x &:=& \partial_xI(\mathbf x+\ma...
...mathbf x+\mathbf w)-\partial_yI(\mathbf x)\mbox{.}
 \end{array}\end{displaymath} (8)

According to the calculus of variations, a minimiser of (7) must fulfill the Euler-Lagrange equations
    $\displaystyle \Psi'(I_z^2+\gamma(I_{xz}^2+I_{yz}^2))\cdot
(I_xI_z+\gamma(I_{xx}I_{xz}+I_{xy}I_{yz}))$  
    $\displaystyle \qquad \qquad\qquad\qquad \qquad \qquad\qquad -
\alpha\;$div$\displaystyle  \left(\Psi'(\vert\nabla_{\hspace*{-0.5mm}3}u\vert^2+\vert\nabla_{\hspace*{-0.5mm}3}v\vert^2)\nabla_{\hspace*{-0.5mm}3}u\right) =0,$  
    $\displaystyle \Psi'(I_z^2+\gamma(I_{xz}^2+I_{yz}^2))\cdot
(I_yI_z+\gamma(I_{yy}I_{yz}+I_{xy}I_{xz}))$  
    $\displaystyle \qquad \qquad\qquad\qquad \qquad \qquad\qquad -
\alpha\;$div$\displaystyle  \left(\Psi'(\vert\nabla_{\hspace*{-0.5mm}3}u\vert^2+\vert\nabla_{\hspace*{-0.5mm}3}v\vert^2)\nabla_{\hspace*{-0.5mm}3}v\right) =0$  

with reflecting boundary conditions.



Thomas Brox 2004-06-29