Tutorials on topics in 2D image analysis, computer vision
Online Written Course Notes
- General
- Dealing with Imprecise Spatial Information in Cognitive Vision (Isabelle Bloch)
- Neural nets in Vision (Roger Boyle, David Hogg)
- Vision Systems (A D Marshall)
- Vision Computacional (L. E. Sucar and G. Gomez - in Spanish)
- Vision Through Optimization (N. A. Thacker and T. F. Cootes)
- Computer Vision Online Course (Andrew Wallace)
- Textured Motion and Complex Motion Modeling (Yizhou Wang)
- Physics/Devices
- High dynamic range imaging for digital still camera: an overview (S. Battiato, A. Castorina, M. Mancuso)
- Tsai Camera Calibration Method Revisited (Interior Orientation) (Berthold K. P. Horn)
- Observations on the physics of imaging and image coding (Julio Marten)
- Representation/recognition
- Object Categorization (Axel Pinz)
- Mathematics/Geometry
- An Introduction to Projective Geometry (for computer vision) (Stan Birchfield)
- Tutorial on Rectification of Stereo Images (Andrea Fusiello)
- The Essential Matrix ... (Coplanarity Condition) (Berthold K. P. Horn)
- Quaternions and Rotation (Berthold K. P. Horn)
- Resources for Discrete Geometry (IAPR TC 18)
- Digital Geometry and Mathematical Morphology (Christer Kiselman)
- Linear inverse problems: A discrete presentation (Ali Mohammad-Djafari)
- Transforme de Radon et ses applications (French) (Ali Mohammad-Djafari)
- Inference bayesienne pour les problemes inverses (French) (Ali Mohammad-Djafari)
- Detection-Estimation (Ali Mohammad-Djafari)
- Problemes inverses (French) (Ali Mohammad-Djafari)
- Projective Geometry for Image Analysis (Roger Mohr, Bill Triggs)
- Monte Carlo methods (Jonathan Pengelly)
- Visual 3D Modeling from Images (Marc Pollefeys)
- Principal Components Analysis (Lindsay Smith)
- Fourier Analysis (Yerin Yoo)
- Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting (Zhengyou Zhang)
- Geometric Framework for Vision I: Single View and Two-View Geometry (Andrew Zisserman)
- Image processing/analysis
- Fixed Flow (Constant Optical Flow) (Berthold K. P. Horn)
- Optical Flow with Fixed Translation and Rotation (Berthold K. P. Horn)
- Principles for automatic scale selection (Tony Lindeberg)
- Automatic scale selection as a pre-processing stage for interpreting the visual world (Tony Lindeberg)
- Scale-space theory: A basic tool for analysing structures at different scales (Tony Lindeberg)
- A Gentle Introduction to Bilateral Filtering and its Applications (Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand )
- Applications
- Particle Filtering for Visual Tracking (Pedram Azad)
- Spatial Augmented Reality (Oliver Bimber, Ramesh Raskar, Masahiko Inami)
- A Tutorial on CAPTCHA - Completely Automated Public Turing test to tell Computers and Humans Apart (Theo Pavlidis)
- Modern Techniques In Remote Sensing (Maria Petrou)
- Supervised Neural Networks in Machine Vision (Neil Thacker)
- Performance Characterisation in Computer Vision: The Role of Statistics in Testing and Design (Neil Thacker)
- An Empirical Design Methodology for the Construction of Machine Vision Systems (Neil Thacker)
- Performance Characterisation in Computer Vision: A Guide to Best Practices (Neil Thacker)
- New Trends in 3D Video (Christian Theobalt, Stephan Wuermlin, Edilson de Aguiar, Christoph Niederberger)
- Introduction to Computer Vision from Automatic Face Analysis Viewpoint (Erno Makinen)
Online Tutorial PPT/PDF Slides
- General
- The Monogenic Framework: A Systematic Approach to Image Processing and Computer Vision (Michael Felsberg)
- Introduction to some aspects of biological vision (Li Zhaoping)
- Visual Recognition in Primates and Machines (Tomaso Poggio, Thomas Serre)
- Computational Photography (Ramesh Raskar, Jack Tumblin)
- Tutorial on Coded Light Projection Techniques (Joaquim Salvi, Jordi Pagis)
- The business case for implementing machine vision (PPT) - selecting a vision system from a management perspective (Nello Zuech)
- Physics/Devices
- Optics (George Barbastathis)
- Workshop on Diffusion Tensor Imaging (National Alliance for Medical Image Computing)
- Spectral color imaging (Jussi Parkkinen)
- Spectral image applications (Jussi Parkkinen)
- 8 lectures on color (Jussi Parkkinen)
- Representation/recognition
- Recognizing and Learning Object Categories (Li Fei-Fei, Rob Fergus, Antonio Torralba)
- Object Recognition (Li Fei-Fei)
- Geometric Model Acquisition (PPT) (Steve Maybank)
- Probabilisitic models of visual object categories (Andrew Zisserman)
- Template Matching Techniques in Computer Vision (Roberto Brunelli)
- Mathematics/Geometry
- Gradient Domain Manipulation Techniques in Vision and Graphics (Amit Agrawal, Ramesh Raskar)
- Bayesian Techniques in Vision and Perception (Olivier Aycard and Luis Enrique Sucar)
- Graph Cuts (Andrew Blake)
- Graph-Cuts versus Level-Sets (Yuri Boykov, Daniel Cremers, Vladimir Kolmogorov )
- Bayesian Methods for Multimedia Signal Processing (A. Taylan Cemgil)
- Clustering and Robust Techniques in Computer Vision (Per-Erik Forssen)
- Deep Belief Nets (Geoffrey Hinton)
- Lectures on Discrete Geometry (IAPR TC 18)
- Hidden Markov Models (Philip Jackson)
- Discrete Optimization in Computer Vision (Nikos Komodakis, Philip Torr, Vladimir Kolmogorov, Yuri Boykov)
- Hidden Markov Models (PPT) (Dimitrios Makris)
- Bayes Optimality in Pattern Recognition (Aleix Martinez)
- Stereo Vision: Algorithms and Applications (Stefano Mattoccia)
- Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning (Philippos Mordohai)
- Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics (Amnon Shashua)
- Image processing/analysis
- Graph Based Image Segmentation (Jianbo Shi, Charless Fowlkes, David Martin, Eitan Sharon)
- Lectures on Image Processing (Richard Peters)
- Texture (Mike Chantler)
- Applications
- Kernel Methods in Remote Sensing: Introduction, Applications and Research Opportunities (Gustavo Camps-Valls)
- Visual servoing (Francois Chaumette)
- Image Processing in Biomedical Applications (S. Colantonio, D. Moroni, O. Salvetti)
- Tutorial Medical Image Retrieval (Thomas Deselaers, Henning Muller)
- Iterative Methods for Image Reconstruction (Jeffrey Fessler)
- Computer Vision for Augmented Reality (Jan-Michael Frahm)
- 3D Camera Tracking, Reconstruction and View Synthesis at Interactive Frame Rates (Jan-Michael Frahm, Reinhard Koch, Jan-Friso Evers-Senne)
- Integration of Vision and Graphics, with Sports Applications part 1, part 2 (Oliver Grau)
- Improving Image Quality in Image Compositing (Mark Grundland)
- Open-source Insight Toolkit (ITK) for medical image segmentation and registration (Luis Ibanez, Lydia Ng, Joshua Cates, Stephen Aylward, Bill Lorensen, Julien Jomier)
- Face Detection and Recognition using Machine Learning (Sebastien Marcel)
- Face detection and recognition (Sebastien Marcel)
- Face Recognition (Sebastien Marcel)
- Computer Vision for Wearable Visual Interface (Walterio Mayol, Takeshi Kurata)
- Animate Vision concepts for image retrieval (Vincenzo Moscato)
- Spatio-temporal Data Mining (Shashi Shekhar)
- Multimedia Information Retrieval (Alan Smeaton)
- Multimedia Information Retrieval Evaluation Initiatives (Alan Smeaton)
- Designing multi-scale algorithms medical image analysis (Bart M. ter Haar Romeny)
- Biometrics for Surveillance (S. Kevin Zhou, Rama Chellappa)
Online Video Tutorials
- General
- Computational
models of vision (Shimon Ullman, 1:30')
- Advanced Vision Course (Bob Fisher, 16:00)
- Computer
Vision (Andrew Blake, 3:00)
- Applications
to Machine Vision (Andrew Blake, 1:00)
- Computer
vision (Richard Hartley, 3:00)
- Topics in
image and video processing (Andrew Blake, 3:11')
- The Future of
Image Search (Jitendra Malik, 1:00)
- Introduction to Vision and Robotics Course (Bob Fisher, ~8:00 video + 20:00 audio)
- Machine Learning in Computer Vision
- Learning
in Computer Vision (Simon Lucey, 5:31')
- Machine
learning and kernel methods for computer vision (Francis R. Bach, 0:40')
- Multiple
kernel learning for multiple sources (Francis R. Bach, 0:45')
- Machine
Learning in Vision (Bill Triggs, 2:40')
- Learning
shared representations for object recognition (Antonio Torralba, 1:20')
- Learning
Visual Distance Function for Object Identification from one Example (Frederic Jurie, 0:20')
- Energy-based
models & Learning for Invariant Image Recognition (Yann LeCun, 3:40')
- Toward
Learning Mixture-of-Parts Pictorial Structures (Alan Fern, 0:36')
-
Enhancing functional magnetic resonance imaging with supervised learning (Stephen LaConte, 0:26')
- Learning with spectral representations and use of MDL principles (Edwin Hancock, 0:41' )
- Object Recognition
- Large-Scale
Object Recognition Systems (Cordelia Schmid, 0:36')
- Global
and Efficient Self-Similarity for Object Classification and Detection (Thomas Deselaers, 0:18')
- Object
Recognition by Discriminative Combinations of Line Segments and Ellipses (Alex Chia, 0:18')
- Stereo
Vision for Obstacle Detection: a Graph-Based Approach (Alessandro Limongiello, 0:40')
- 101
Visual object classes - Introduction (Andrew Zisserman, 0:52')
- Recognising
Animals (Allan Hanbury, 0:20')
- Generative
Models for Visual Objects and Object Recognition via Bayesian Inference (Fei-Fei Li, 01:00)
-
Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities (Fei-Fei Li, 0:19')
- Detecting
Motifs Under Uniform Scaling (Dragomir Yankov, 0:18')
- Research 17:
Integrating and Querying Parallel Leaf Shape Descriptions (Shenghui Wang, 0:28')
- Object
Identification by Statistical Methods (Hans-Joachim Lenz, 1:22')
- Feature
extraction & content description I (Nicu Sebe, 2:27')
- Feature
extraction & content description II (Milind Naphade, 2:40')
- Understanding
Visual Scenes (Antonio Torralba, 2:00)
- On
Detection of Multiple Object Instances using Hough Transforms (Olga Barinova, 0:17')
- Grouplet: A
Structured Image Representation for Recognizing Human and Object Interactions (Bangpeng Yao, 0:18')
- Food
Recognition Using Statistics of Pairwise Local Features (Shulin (Lynn) Yang, 0:14')
- Multimodal
semi-supervised learning for image classification (Matthieu Guillaumin, 0:19')
- Object-Graphs
for Context-Aware Category Discovery (Yong Jae Lee, 0:18')
-
Common
Visual Pattern Discovery via Spatially Coherent Correspondences (Hairong Liu, 0:17')
- Cascade
Object Detection with Deformable Part Models (Ross B. Girshick, 0:17')
- A Novel
Riemannian Framework for Shape Analysis of 3D Objects (Sebastian Kurtek, 0:16')
- Segmentation
- Graph-Based Perceptual Segmentation of Stereo Vision 3D Images
at Multiple Abstraction Levels (Rodrigo Moreno, 3:30')
- Adaptive Feature Selection in Image Segmentation (Volker Roth, 0:26')
- Object
Recognition by Discriminative Combinations of Line Segments and Ellipses (Alex Chia, 0:18')
- Text Recognition
-
Book-Adaptive and Book-Dependent Models to Accelerate Digitization of Early Music (Douglas Eck, 0:09')
- Text
Recognition Evaluation (Padmanabhan Soundararajan, 0:16')
- Videotext Recognition System (Rahid Prasad, 0:17')
- Detecting
Text in Natural Scenes with Stroke Width Transform (Boris Epshtein, 0:17')
- The
chains model for detecting parts by their context (Leonid Karlinsky, 0:17')
- fMRI Analysis
- Multimodal
Imaging: EEG-fMRI integration (Tom Eichele, 0:57')
- EEG/fMRI correlation analysis. A data and model driven approach (Jan de Munck, 1:00)
- Introduction and overview of FMRI concepts and terminology (John-Dylan Haynes, 0:27')
- Scanning
the brain and probing the mind (Nigel Leigh, Blaz Koritnik, 1:31')
- Implications of decoding for theories of neural representation (James Haxby, 0:36')
- Exploring human object-vision with hi-res fMRI and information-based analysis (Nikolaus Kriegeskorte, 0:30')
- Hierarchical
Gaussian Naive Bayes Classifier for Multiple-Subject fMRI Data (Indrayana Rustandi, 0:11')
- Overview
of decoding of mental states and processes (Tom Mitchell, 0:25')
- Symbolic Dynamics of Neurophysiological Data (Peter beim Graben 0:50')
- Unsupervised
fMRI Analysis (David R. Hardoon, 0:12')
- From
functional elements to networks in fMRI (Ricardo Vigario, 0:52')
- Classifying single trial fMRI: What can machine learning learn? (Paul Mazaika, 0:12')
- fMRI-based
decoding of the modified default-mode network in mild cognitive impairment (Fabian Theis, 0:15')
- Generative
Models for Decoding Real-Valued Natural Experience in FMRI (Greg Stephens, 0:15')
- Motion and Tracking
- Visual localization and tracking (Andrew Blake, 3:00)
- Dynamical
Binary Latent Variable Models for 3D Human Pose Tracking (Graham Taylo, 0:18')
- Projective
Kalman Filter: Multiocular Tracking of 3D Locations Towards Scene Understanding (Cristian Ferrer Canton, 0:15')
- Visual
Tracking Decomposition (Junseok Kwon, 0:18')
- Tracking
the Invisible: Learning Where the Object Might Be (Helmut Grabner, 0:18')
- Other Subjects
- Qualitative
Spatial Relationships for Image Interpretation by using Semantic Graph (Aline Deruyver, 0:20')
- Using
computer vision in a rehabilitation method of a human hand (Jaka Katrasnik, 0:09')
- Large Scale
Scene Matching for Graphics and Vision (James Hays, 01:00)
- Graph-based
Methods for Retinal Mosaicing and Vascular Characterization (M. Elena Martinez-Perez, 0:30')
- Grouping Using
Factor Graphs: an Approach for Finding Text with a Camera Phone (Huiying Shen, 0:22')
- Introduction
to Multimedia Digital Libraries (James Wang, 3:00)
- Visual
Categorization with Bags of Keypoints (Christopher Dance, 0:50')
- Spatiotemporal
classification (Janaina Mourao-Miranda, 0:24')
- Image
Classification Using Marginalized Kernels for Graphs (Emanuel Aldea, 0:20')
- Graph Cuts (Andrew Blake, ~1:00)
- Graph Cuts (Shorter) (Andrew Blake, ~0:30 )
- Probabilistic Relaxation Labeling by Fokker-Planck Diffusion on a Graph (Edwin Hancock, 0:21' )
- Graph Spectral Image Smoothing (Edwin Hancock, 0:28' )
- Videolectures->Computer Science->Computer Vision (videolectures.net)
Return to Student/Researcher Resource page
© 2008 Robert Fisher