Machine Learning 2025/26

Calendar

Week Date Content Lecturer
1 12 Jan No class (accommodating SDP)
14 Jan Introduction [slides] Hao
16 Jan

Probability and statistics [slides]

[DFO] 6.1, 6.2, 6.3, 6.4, 6.5

Hao
2 19 Jan

Classification 1 [slides]

[M] 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Hiroshi
20 Jan

Tutorial 1 [sheets]

Data sets

21 Jan

Classification 2 [slides]

[M] 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Hiroshi
23 Jan

Classification 3 [slides]

[LWLS] 3.2, 3.3

Hiroshi
3 26 Jan

Classification 4 [slides]

[LWLS] 3.2, 3.3

Hiroshi
28 Jan

Multivariate calculus

[DFO] 5.2, 5.3

Hao
30 Jan

Optimization 1

[SB] 12.1

Hao
4 2 Feb

Optimization 2

[SB] 14.1

Hao
3 Feb

Tutorial 2

Digit classification

4 Feb

Optimization 3

[DFO] 7.2

Hao
6 Feb

Support vector machines

[DFO] 12.2, 12.3

Hiroshi
5 9 Feb

Features and kernels

[LWLS] 3.3, 8.1

Hiroshi
11 Feb

Neural networks 1

[LWLS] 6.1

Hiroshi
13 Feb

Neural networks 2

[LWLS] 6.2

Hiroshi
(Flexible learning week)
6 23 Feb

Generalization 1

[SB] 3.1, 4.1

CW1 released

Hao
24 Feb

Tutorial 3

pytorch

25 Feb

Generalization 2

[SB] 6.2

Hao
27 Feb

Generalization 3

[SB] 13.2, 13.3

Hao
7 2 Mar

Linear regression 1

[LWLS] 3.1

Hiroshi
4 Mar

Linear regression 2

[LWLS] 3.3, 8.1

Hiroshi
6 Mar

Principal component analysis

[B] 12.1

Hiroshi
8 9 Mar

K-means

[B] 9.1
[LWLS] 10.2

CW1 due

Hiroshi
10 Mar

Tutorial 4

Singular value decomposition

11 Mar

Gaussian mixture models

[B] 9.2
[LWLS] 10.2

Hiroshi
13 Mar

Expectation maximization

[B] 9.3, 9.4

Hiroshi
9 16 Mar

Probabilistic graphical models 1

[B] 8.1, 8.2, 8.3

Hao
18 Mar

Probabilistic graphical models 2

[B] 8.1, 8.2, 8.3

Hao
20 Mar

Self-supervised learning 1

Hao
10 23 Mar

Self-supervised learning 2

CW1 feedback returned

Hao
24 Mar

Tutorial 5

Autoencoders

25 Mar

Generalization 4

Hao
27 Mar

Closing

Hao