Machine Learning 2024/25

Calendar

Week Date Content Lecturer
1 13 Jan No class (accommodating SDP)
14 Jan

Tutorial 1 [sheets]

What is machine learning?

15 Jan Introduction [slides] Kia
17 Jan

Crash course on maths [slides, notes]

[DFO] 5.2, 5.3

Kia
2 20 Jan

Regression 1 [slides]

[LWLS] 3.1

Kia
22 Jan

Regression 2 [slides]

[LWLS] 3.3 and 8.1

Kia
24 Jan

Ethics [slides]

Kia
3 27 Jan

Classification 1 [slides]

[M1] 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Hiroshi
28 Jan

Tutorial 2 [sheets]

Curve fitting

29 Jan

Classification 2

[M1] 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Hiroshi
31 Jan

Classification 3 [slides]

[LWLS] 3.2, 3.3

Hiroshi
4 3 Feb

Classification 4

[LWLS] 3.2, 3.3

Hiroshi
5 Feb

Optimization 1 [slides]

Hiroshi
7 Feb

Optimization 2 [slides, notes]

[SB] 12.1

Hiroshi
5 10 Feb

Optimization 3 [slides]

[SB] 14.1

Hiroshi
11 Feb

Tutorial 3 [sheets]

Data sets

12 Feb

Optimization 4 [slides]

[DFO] 7.2

Hiroshi
14 Feb

Support vector machines [slides]

[DFO] 12.2, 12.3

Hiroshi
(Flexible learning week)
6 24 Feb

Neural networks 1 [slides]

CW1 released [sheets, solutions]

[LWLS] 6.1

Hiroshi
26 Feb

Neural networks 2 [slides]

[LWLS] 6.2

Hiroshi
28 Feb

Neural networks 3 [slides]

Hao
7 3 Mar

Principal component analysis [slides]

[B] 12.1

Kia
4 Mar

Tutorial 4 [sheets]

pytorch

5 Mar

K-means clustering [slides]

[B] 9.1
[LWLS] 10.2

Kia
7 Mar Class canceled
8 10 Mar

Gaussian mixture models [slides]

[B] 9.2
[LWLS] 10.2

CW1 due

Kia
12 Mar

Expectation maximization [slides]

[B] 9.3, 9.4

Kia
14 Mar

Probabilistic graphical models [slides]

[B] 8.1, 8.2, 8.3

Kia
9 17 Mar

Generalization 1 [slides]

[SB] 3.1, 4.1

Hao
18 Mar

Tutorial 5 [tutorial-5.tar.gz]

Singular Value Decomposition

19 Mar

Generalization 2 [slides]

[SB] 6.2

Hao
21 Mar

Generalization 3 [slides]

[SB] 13.2, 13.3

Hao
10 24 Mar

Generalization 4 [slides]

CW1 feedback returned

Hao
26 Mar

High-dimensional statistics [slides]

Hao
28 Mar

Closing [slides]

Hao